
1

Modelling the Political Context in Requirements Engineering. The System is made for
Man, not Man for the System

Rana Siadati, Paul Wernick and Vito Veneziano
School of Computer Science
University of Hertfordshire

Hatfield, Hertfordshire (UK)
r.siadati@herts.ac.uk

Abstract - This paper describes the authors’
point of view on reaching a stage at which it is
necessary to understand customer organisations
better to identify their problems and how to
address them. To resolve this issue we need a
mechanism to capture and model how that
organisation actually operates by mapping
organisations against the system to be developed,
by including power and politics in their "too
human" and even emotional dimension. We then
describe here a notation by which to recognise
and document power, politics and the emotional
aspects of software requirements-related
decision-making in customer organisations. We
conclude by outlining that our suggested
graphical notation would maybe not solve the
problem: but even if it just raises awareness, this
would make us closer to solving the problem.
Given the sensibility of the political issue, it is
assumed that the generated diagram using the
above mentioned notations is only for the
requirements engineer and his/her team, thus
remaining strictly private.

Index Terms—Politics, Power, Requirements
Engineering, Requirement Engineer, Software
Requirements, Software Engineering, Customer,
Organisation, Graphical notation

I. Background and context

Despite some progress, software practitioners are
still some distance from fully mastering the art of
eliciting, analysing and validating requirements in
such a way that all parties would find it satisfactory.

Politics and the power have been identified as
crucial components of requirements engineering
(RE) and argue that the role it plays, especially when
RE is applied to the software industry, needs to be
given greater attention than is currently the case. The
intention is to improve the understanding of
professionals and academics of the present state of
that role, and to face (if not to drive) any future
evolution of the discipline by providing sounder

conceptual and interpretative tools and models than
are currently available. We contend that over-
simplified views and considerations of such aspects
have become predominant in how we train
requirements engineers: such views may well have
contributed to a selective blindness for power
dynamics and how they do not always propagate
linearly, from top to bottom, but rather follow more
complex patterns.

We also feel that the adoption across the field of
notations and technical language(s) from
engineering (e.g., organigrams and UML) with
limited ability to express, for example, ambiguity, to
represent complex phenomena like organisations,
can result in models that only capture a static,
structural view, as if complex, changing webs of
personal relationships in an organisation can be the
object of just another engineering blueprint. This has
in our opinion led to an implicit decision to ignore
or abstract away how organisations become
permeated by political relationships in a fluid,
dynamic and sometimes unpredictable way.

If software requirements engineers and analysts are
to be able to take advantage of any insight they could
gain into politics and power relations within
organisations – for example, who de facto decides
which priorities come first when a conflict arises
between two departments in the same company – a
more appropriate (but unfortunately less easy)
approach would have demanded, and will continue
to demand, more effort to be made to understand the
relevant political dynamics and their source(s)
behind the official organisational structure.
However, politics as actually occurring in an
organisation should be seen as a fourth, more
fundamental dimension informing the results of the
above three tasks, one which sometimes subverts the
‘official’ power structures as might be documented
as above. The informal chains of power must be
understood as well as the formal when, for example,
trading off requirements. We have now started
research into identifying elements of a workable
notation for documenting political and power
relationships within a typical RE project, and

2

through which the necessary negotiation processes
might be contextualised and understood.

II. Introduction

As software engineers our goal is to produce high-
quality software. To achieve this we must ensure
that we understand customers’ needs not fail to
meet their requirements/expectations, and they must
know what to expect. As Alexander (2005) says,
“The System is made for Man, not Man for the
System.”

Software Engineering emerged as a concept 50 years
ago at NATO Garmisch conference in 1968 (Naur
and Randell, 1969). Although many issues were
raised and discussed, and since then we have tried
very hard to find solution for our development
problem, we are still failing to produce the highest
quality software that our customers deserve.
Nuseibeh et al. (2000) note that “The primary
measure of success of a software system is the
degree to which it meets the purpose for which it was
intended. Broadly speaking, software systems
requirements engineering (RE) is the process of
discovering that purpose, by identifying
stakeholders and their needs, and documenting these
in a form that is amenable to analysis,
communication, and subsequent implementation.”

In many cases our failure is due to a failure in
identifying crucial requirements. Hofmann and
Lehner (2001) state that “deficient requirements [is]
the single biggest cause of software project failure”,
adding that “getting requirements right might be the
single most important and difficult part of a software
project.”

To gain success in the future we need to learn from
the past and also to identify the factors that played a
key role in this success. If we call the time from
1950s to 1968 the first generation of
computerisation, the battle was to make systems
work with the limited hardware available.

A second generation tried to produce more reliable
systems better fitted to the organisation. Many
languages, methods and techniques have been
introduced in the last 50 years in attempts to achieve
this; Randell (2018) states that “I am reluctant to
accept that it justifies anywhere near 8945
languages, and the very large number of different
methods and techniques that have been created.”
However, problems still exist.

We believe that we have now reached a stage at
which it is necessary to understand customer
organisations better to identify their problems and

how to address them. It has not been uncommon for
us to expect customers to incline towards our
(software developers’) ways of thinking about their
organisations and systems, whilst ignoring the
internal dynamics of customer organisations. We
suggest that software requirements can only be
agreed on all sides if we understand the way that
customer’s organisation (ref Ian’s paper about not
one customer) makes decisions.

We have also previously stated (2017a) our belief
that “since 1995, both practitioners and academics
have not done enough to address non-technical
issues, and/or that some crucial factors that might
possibly improve RE practice have not yet been
effectively addressed.” We also raised there the
question of why has the focus of RE developments
been mostly on the technical component.

To resolve this issue we need a mechanism to
capture and model how that organisation actually
operates. We have previously argued (2007b) that
argue that “this issue could be successfully
addressed and resolved if, when we map
organisations against the system to be developed, we
include power and politics in their "too human" and
even emotional dimension."

We describe here a notation which recognises and
documents power, politics and the emotional aspects
of software requirements-related decision-making in
customer organisations. We suggest that “a simple
way to do so is to use emoji pictograms: most of
them are part of a universal language, which
requirements engineers could easily adopt and
exploit to assess and produce models that include an
extra layer of “political” information in existing
organograms, without the need to actually introduce
a radically new notation.

III. Technical and non-technical factors

Geethalakshmi and Shanmugam (2008), along with
many other software engineers, developers and/or
authors, point out that the success and failure of any
software development project depends not only on
technical factors, but on other non-technical
factors/components. Non-technical factors have the
same amount of influence, if not more, than the
technical factors on the success or failure of software
development projects.

Despite the concern of Hull et al., (2002) that “the
most common reasons for project failures are not
technical” for many years new techniques
(addressing the technical component instead) have
been suggested, although Fricker et al (2015) states
that “many of these techniques did not become

3

industrial because they were not practicable or
ineffective when used in real-world projects.” Even
when new techniques and tools have been
introduced to address technical problems, we are
still at times failing to deliver successful projects or
to even increase the success rate. We believe that, as
the project development life cycle starts from system
requirements specification, the effect of non-
technical factors, whether obvious or hidden, should
be considered at this level to prevent failure at a later
stage.

IV. Organisational politics

We have identified organisational politics as one
non-technical factor which has existed for as long as
organisations themselves. What could be beneficial
is to recognise or even highlight important entities
such as organisational politics and demonstrate it in
our modelling which could lead to express the
software design. In Organisational Behavior (2010),
Brandon and Seldman (2004) and Hochwarter et al.
(2000) were cited for stating that “organizational
politics are informal, unofficial,
intentional/unintentional and sometimes behind-the-
scenes efforts to sell ideas, influence an
organization, increase power, or achieve other
targeted objectives”.

However, we observe that little work has been done
to date to assist requirements engineers navigate
organisational politics to gain acceptance for sets of
systems requirements. Milne and Maiden (2012)
write that ‘although notable work has been
undertaken on the importance of social factors in
RE, there has been relatively little direct
consideration of the influence of power and politics’.

We believe that modelling the actual power
relationships in an organisation, as against those
identified from a traditional organogram, will help
the requirement engineer identify those influences
which not necessary always comes from the person
above. It is possible to have a scenario in which the
influencer not to be the powerful person in the
formal hierarchy, when influences go beyond the
formal to include the informal influences both
within and outside formal structures. Knowledge of
these situations will assist a requirements engineer
to understand how to achieve a solution which will
be acceptable to those most able to influence
requirement decisions. In particular, we feel that is
it vital for a requirements engineer to have this
information available when they take a job over
from a colleague who is already aware of, and may
be taking into account, the need to convince
informal as well as formal power-holders.

Betts (2011) believes that “IT professionals have to
deal with corporate politics - in fact, they need to
embrace it”. We've all heard “techies” say: "Leave
me out of the politics. I just want to implement the
technology." But that's not a recipe for success. As
the book puts it: “Where there's technology, there's
change, and where there's change, and there will be
people who perceive themselves a winner or loser.
That's where politics begin.”

IV. Modelling politics alongside design of
the future system

Adopting the right modelling technique (or
techniques) is also another challenging task and
usually some sort of abstract language or
diagrammatic representation is used in modelling
techniques. Non-diagrammatic requirements
modelling techniques are widely spread. However,
Beatty and Chen (2012) claim that “visual
requirements models are one of the most effective
ways to identify software requirements. They help
the analyst to ensure that all stakeholders—
including subject matter experts, business
stakeholders, executives, and technical teams—
understand the proposed solution.

Visualization keeps stakeholders interested and
engaged, which is key to finding gaps in the
requirements. Most importantly, visualization
creates a picture of the solution that helps
stakeholders understand what the solution will and
will not deliver”.

VI. What modelling notations should be
used to show the politics in a software
engineering project?

It is common experience that designing the future
system usually implies modelling it by using
different notations.

There are lots of different notations or approaches
for modelling stakeholders’ and system
requirements, such as UML. Modelling notations
can be used to demonstrate and assist the
requirements engineers’ understanding of the
problem.

Beatty and Chen (2012) state that “to make a
requirements process ‘fly’, the first step is to
understand that there is more than one kind of
requirements model. A shopping list of requirements
is invaluable in a contract, but on its own, it’s
desperately difficult to check for correctness and
completeness, and it doesn’t offer any suggestions

4

on how to discover requirements, either. Different
requirements models are needed to assist with
discovering, checking, and analysing the
requirements. The ‘shopping list’ is an output, not
the one-and-only input.”

However, we still need a simple notation to
document both informal and formal power
relationships.

Our suggested graphical notations for modelling
requirements would maybe not solve the problem:

but even if it just raises awareness, this would make
us closer to solving the problem.

Given the sensibility of the political issue, it is
assumed that the generated diagram using the above
mentioned notations is only for the requirements
engineer and his/her team, thus remaining strictly
private.

Table 1 - A notation for graphical modelling of politics in requirements engineering

Name

Notation Comment

Entity

Identification will be presented by circled entity (with name, title
or other identification)

Formal Power
Relationship

Single lines will be used as connectors and represents power
within the organisation. More lines show more power.

Power Direction

Lines with arrow shows the direction of influence/power which
can only be either one sided.

Power to Block

Lines with a cross in the middle represent power to block which
means that person is not reachable but he/she might be reachable
through another person. For instance, a manager will not allow a
requirements engineer to talk to his employees as he might find
out about the influence/power within the organisation.

Note: Status of stakeholders will be shown by emoji faces which can be defined as some internal or external
entity that interacts with the system. The purpose of using emoji faces including facial expression.

Happy Stakeholder

‘Happy’ stakeholder (satisfied with current system requirements)

Sad Stakeholder

‘Sad’ stakeholder (dissatisfied with current system requirements)

Neutral

Stakeholder

Neutral stakeholder

Informal

Relationship/influe
nce

Informal relationship/influence

5

VII. Discussion

An important aspect of requirements engineering is
that people may change their view of the benefits
or disadvantages of one or more system
requirements as a result of instructions from more
senior members of the organisation, or for reasons
or influences outside the scope of the formal
organisational structure. We show below a couple
of examples of how the notation would reflect
changing attitudes to a proposed system:

Fig 1. Outcome of Informal
relationship/influence: change of views/status

We set out here a how we would document a small
organisation, and how informal power structures
might affect the acceptability of a set of system
requirement.

Figure 2 below show a typical organisational
structure (or an organigram), such as might be
found when documenting a hierarchical
organisation. This is what is immediately visible
from aspects such as organisation charts, job titles,
formal roles, size of offices and quality of office
carpets and so on.

Fig. 2. Traditional organigram.

It is generally the case that those nearer to the top
of this pyramid have more power than those nearer
to the bottom. To show our assumption of the
direction of power we add arrowheads to the lines
as shown in Figure 3.

Fig 3. Directions of power (the usual assumption
behind the organigram)

This diagram represents who reports to whom in a
company, and who can formally direct
subordinates. However, it does not capture the
degree to which a senior member of the structure
can direct their subordinates – their relative power.
To represent this, we add more liens to the more
powerful relationships, as shown in Figure 4, in
which A has more power over B than they have
over C, and C has more power over F than they
have over G, and even more than A has over B.
This may be due to the job roles, some of which are
more directed than others; compare, for example,
the relative power positions of a finance manager
over a finance clerk whose work is routine and
follows a set of rules laid down by their seniors,
with the power of a design director over product
designers whose creativity and independence may
be valued rather than discouraged.

Fig. 4. Organigram showing relative power
(with multiple arrows)

The next important influence on the work of the
requirements engineer is that of the opinion of the
user and decision-maker community on the system
requirements as currently stated. Our notation
therefore needs to show how happy or unhappy
each participant is. This can be added to our
diagram by the use of Emoji faces to show the
status of stakeholders.

Fig 5 adds information on the opinions of each
person in the hierarchy as to the system
requirements. This examples shows that all are
currently happy with these, with the exception of
one low-level person (D). Ostensibly this might
indicate that there will be no problems in obtaining

6

support from people with sufficient authority to
obtain agreement for the requirements.

Fig. 5. Organigram showing relative power and
status/views of each person.

However, not all the relevant relationships and
influences are reflected in the formal structures
documented so far. For the requirements engineer
to understand the complete political environment
within which they are working is essential to show
informal organisational and other relationships.

Figure 6 shows an example of an informal
relationship between two entities which can change
the whole situation. Here for some reason the
apparently lower-level member of the hierarchy has
an influence in decision making beyond that which
would be expected from their apparent lack of
formal power. This might be due for example, to a
back channel within the organisation, or a personal
relationship outside work between the two people,
such as a common sport or private relationship.
Documenting this is important for the requirements
engineer to have a full understanding of how the
influences on decision making operate; it may also
sometimes show the importance of maintaining the
privacy of this model from people who might not
be aware of the relationship being documented.

In Figure 6, D has a relationship, whose specific
nature is not specified here, with A. Whereas
Figure 6 suggests that D’s unhappiness with two
requirements can be ignored because of their
comparatively low position in the formal hierarchy,
an informal influence on A might cause A to
change their mind to a greater or lesser extent, and
thus cause A to act or decide in a manner which
would be unexpected in the absence of this
information.

Other internal or external people, roles or entities
that interact with the system and will have
influence over decisions on its requirements can
also be represented in this notation using the dotted
‘informal influence’ lines shown below.

Fig. 6. Informal influence of D on A

In the above figure, the informal relationship and
power/influence of D over A has turned A from
Happy to unhappy mode. Give that A has more
control to B than they have over C, the mode of B
may also be changed from happy to unhappy whilst
C remains happy. This situation is reflected in Fig 8
below.

Fig. 7: Changes of views/status after informal
influence of D on A

To summarise, we assume (and the model now
reflects) that the overall decision-maker (A) was
happy with the work of the requirements engineer
but then becomes unhappy (A1) under the informal
influence of D, which may trigger a need to change
the requirements. Should this possibility have been
known earlier, the requirements engineer might
have talked and listened more to D who is an
informal but significant influencer.

VIII. Conclusions and future work

The suggested graphical notation for modelling
the political context in RE would maybe not solve
the problem: but even if it just raises awareness, this
would make us closer to solving the problem. The
suggested notations is to capture, at least partially,
important features of any political relationship
within organisations and enrich their modelling
outcomes. As mentioned in Siadati R et al. (2017a),
“at the moment, practitioners in RE can exercise
their professional expertise by being “aware” of the
political dimension, or by simply assuming the
engineering process is politically neutral.” We shall
now adopt the Impact Evaluation methodology,
based on the retrospective counterfactual analysis of
what difference an intervention would have made in

7

outcomes. We acknowledge this is an area worthy of
further investigation and argue its outcomes could
produce simple and yet effective tools, which
practitioners can actually use in their daily activity.

The next step will be inviting experienced
practitioners to use our approach to analyse their
previous projects and consider whether this would
have helped them in their work, particularly in
identifying and resolving political and power-related

related issues which they had to address. We have
already identified a number of volunteers to help us
in this work; if you would like to join us, please
contact the corresponding author via email
(r.siadati@herts.ac.uk).

In the meantime, we will be seeking more
information and feedback from experts in both
industry and academia.

References

1) Alexander, I. F. (2005), A Taxonomy of Stakeholders, Human Roles in System Development.
International Journal of Technology and Human Interaction, Vol 1, 1, 2005, pages 23-59.

2) Beatty, J. and Chen, A. (2012), Visual models for software requirements. Pearson Education.
3) Betts, M. (2011), No, you can't avoid office politics in IT. Deal with it. Computerworld, Available:

https://Www.Computerworld.Com/Article/2470396/It-Careers/No--You-Can-T-Avoid-Office-Politics-
In-It--Deal-With-It-.Html (accessed 01/09/2018)

4) Brandon, R. and Seldman, M. (2004), Survival of the savvy: High-integrity political tactics for career
and company success. Free Press, New York.

5) Fricker S.A., Grau R., Zwingli A. (2015), Requirements Engineering: Best Practice. In: Fricker S.,
Thümmler C., Gavras A. (eds), Requirements Engineering for Digital Health. Springer, Cham.

6) Geethalakshmi, S.N. and Shanmugam A. (2008), Success and Failure of Software Development:
Practitioners’ Perspective. Proceedings of the International Multi Conference of Engineers and Computer
Scientists 2008, Vol I IMECS 2008, 19-21 March, 2008, Hong Kong.

7) Hochwarter, W. A., Witt, L. A., & Kacmar, K. M. (2000). Perceptions of organizational politics as a
moderator of the relationship between conscientiousness and job performance. Journal of Applied
Psychology, 85, 472–478.

8) Hofmann, H.F. and Lehner, F. (2001), Requirements Engineering as a Success Factor in Software
Projects. IEEE Software, 18, 4, 58-66.

9) Hull E., Jackson K. and Dick J. (2002), Requirements Engineering. Springer, Cham.
10) Milne, A. and Maiden, N. (2012), Power and Politics in Requirements Engineering: A proposed Research

Agenda. Requirements Engineering Journal, Springer, 17, 2, 83-98.
11) Naur P. and Randell B. (Eds.), 1969. Software Engineering: Report on a Conference Sponsored by the

NATO Science Committee. Garmisch, Germany, 7-11 Oct. 1968.
12) Nuseibeh B. and S. Easterbrook (2000). Requirements Engineering: A Roadmap. ICSE ’00 Proceedings

of the Conference on The Future of Software Engineering, 35-46. ACM, New York.
13) Organizational Behavior (2010). Authors and publisher removed. ISBN: 978-1-946135-15-5.

https://doi.org/10.24926/8668.1501
14) Randell, B. (2018), Fifty Years of Software Engineering or The View from Garmisch. ICSE, May 2018.
15) Siadati, R., Wernick, P., & Veneziano, V. (2017a). Politics for the Requirements Engineer. Submitted to

IREB.
16) Siadati, R., Wernick, P., & Veneziano, V. (2017b). Modelling politics in requirements engineering:

adding emoji to existing notations. arXiv:1703.06101.

mailto:r.siadati@herts.ac.uk
https://www.computerworld.com/Article/2470396/It-Careers/No--You-Can-T-Avoid-Office-Politics-In-It--Deal-With-It-.Html
https://www.computerworld.com/Article/2470396/It-Careers/No--You-Can-T-Avoid-Office-Politics-In-It--Deal-With-It-.Html

