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1 Introduction

The idea that eleven-dimensional supergravity, or for that matter M theory, might have

a more unified description incorporating a larger symmetry group is a long-standing one.

Following the original observation that the dimensionally reduced supergravity has a hidden

Ed(d) global symmetry [1–3], formulations using exceptional groups, as well as their infinite-

dimensional extensions, have appeared in various guises [4–18].

In this paper we show that generalised geometry [19, 20] gives a unified geometri-

cal description of bosonic eleven-dimensional supergravity restricted to a d-dimensional

manifold for d ≤ 7. One starts with an extended tangent space [21, 22] which admits a

natural Ed(d) × R
+ action. The bosonic degrees of freedom are unified as a “generalised

metric” G, while the diffeomorphism and gauge symmetries are encoded as a “generalised

Lie derivative.” The local O(d) symmetry is promoted to Hd, the maximally compact sub-

group of Ed(d). Remarkably, the dynamics are simply the generalised geometrical analogue

of Einstein gravity. The bosonic action is given by

SB =

∫

volGR, (1.1)

where volG is the volume form associated to the generalised metric and R is the analogue

of the Ricci scalar. The corresponding equations of motion are simply

RMN = 0, (1.2)

where RMN is the analogue of the Ricci tensor. This work extends the corresponding

description of type II theories in terms of O(10, 10)×R
+ generalised geometry given in [23].

The formalism also describes type II theories restricted to d−1 dimensions, geometris-

ing not only the NSNS sector but also the RR fields. Even though here we focus our

attention on the bosonic sector, we will find that, in fact, the supersymmetry variations

of the fermions are already encoded by the geometry. In a forthcoming paper [24] we ex-

tend the construction to include the fermion fields to leading order, thus completing the

reformulation of restricted eleven-dimensional supergravity.

That eleven-dimensional supergravity could be reformulated with a manifest localH7 =

SU(8)/Z2 symmetry, and fields transforming in E7(7) representations was first shown by

de Wit and Nicolai [4, 5], who also conjectured that formulations using other Ed(d) groups

should exist. This was elaborated on in [7, 8] for the case of H8 = SO(16) local symmetry

and E8(8) representations. Julia [3] had earlier noted that for dimensional reductions to

three-dimensions the global E8(8) symmetry includes part of the three-dimensional helicity

group and wondered if E8(8) could be a symmetry of the theory in all dimensions, while

Duff [6] also independently conjectured that E8(8) was a global symmetry of the eleven-

dimensional equations of motion. The construction of Ed(d) × R
+ generalised geometry

can be viewed as providing a geometrical basis for these results for d ≤ 7. (Note that the

relevant Ed(d) action is by the continuous group rather than the discrete U-duality group

that appears in toroidal reductions of M-theory [26].)
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The idea that dimensional reductions to less than three dimensions should realise

infinite dimensional Kac-Moody algebras was first proposed in [3, 25]. The case of E9 was

analysed in [27, 28], while E10 was discussed in [29–31]. That such algebras might appear

as symmetries of or in classifying the degrees of freedom of the uncompactified theory is

mentioned in [3–6]. It is West [10] who was the first to conjecture that E11 is a symmetry of

the full eleven-dimensional theory, and to give a proposal for how it is realised. At around

the same time, Damour, Henneaux and Nicolai [11] introduced an E10 description of the

full theory, showing that there is a coset formulation of the small-tension expansion near a

spacelike singularity.

In West’s E11 proposal [10], the symmetry is realised non-linearly over an extended

spacetime with an infinite number of coordinates [32]. The corresponding E7(7) non-linear

realisation, following the construction of West and using the finite extended spacetime

originally conjectured in [9], has been discussed in considerable detail by Hillmann [12, 13].

Truncating to conventional spacetime, he was able to show an equivalence with [4, 5],

and, again, the current paper can be viewed as the corresponding geometrical formulation,

analogous to the relation between gravity as Riemannian geometry and as a non-linear

realisation of GL(4)⋉R
4 introduced by Borisov and Ogievetsky [33].

A related approach to realising Ed(d) symmetries is based on the double field theory of

Hull and Zwiebach [34], which describes string backgrounds in terms of fields on a doubled

spacetime that admits an action of O(d, d), and also connects to earlier work by Duff [35],

Tseytlin [36, 37] and Siegel [38, 39]. The dynamics [40–43] are ultimately encoded in a

version of a curvature tensor (first constructed by Siegel [38, 39] and introduced from a

different perspective in [44, 45]) provided the fields are required to satisfy the “strong

constraint”, or “section condition”. This implies that they depend on only half the coordi-

nates, so locally the theory is equivalent to the O(d, d)×R
+ generalised geometry described

in [23]. (Interestingly, in the double field theory realisations of the mass-deformed type IIA

theory [46] and of generic Scherk-Schwarz reductions [47, 48] the strong constraint can be

slightly weakened, and so the relation to generalised geometry becomes less clear.) The

corresponding formulation of M theory with Ed(d) groups was introduced by Berman and

Perry [14] for the case of d = 4, following earlier work by Duff and Lu [49] (see also [50]).

This was extended to d = 5 in [15] and subsequently to d = 6, 7 in [18], using the E11

non-linear formalism of [10] (while the relation to O(d, d) double field theory was discussed

in [16]). In these papers a bosonic action is constructed in terms of first-order derivatives

of the generalised metric in a generic Ed(d) form by brute force. Arbitrary coefficients are

fixed by requiring diffeomorphism invariance upon restriction to dependence on d coordi-

nates, and the resulting expression matches the supergravity action up to integration by

parts. This coordinate restriction means that locally the generalised geometrical theory

constructed here is equally applicable to the double field theory approach to M theory.

In this work we are able to derive the Ed(d) form of the action directly in terms of the

scalar curvature of the generalised connection, which is therefore automatically invariant.

Furthermore, we find a generic Ed(d) covariant form of the “section condition” [17] that

encodes the restriction of the M theory version of double field theory to d coordinates.
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At their core, generalised geometries1 [19, 20] rely on the idea of extending the tangent

space of a manifold M , such that it can accommodate a larger symmetry group that

includes not only diffeomorphisms but also the gauge transformations of supergravity. In

its original form, one studies structures on a generalised tangent space E ≃ TM ⊕ T ∗M ,

with a symmetry group combining diffeomorphisms with the gauge transformations of a

two-form potential B. There is a natural O(d, d) structure on E, where d is the dimension of

M , and a natural bracket between generalised vectors giving E the structure of a Courant

algebroid [51]. Slightly extending the structure group to O(d, d) × R
+, we showed in an

earlier paper [23] that generalised geometry gives a natural rewriting of type II supergravity

unifying the NSNS fields as a generalised metric preserved by an O(9, 1)×O(1, 9) subgroup,

which then becomes a manifest local symmetry of the theory.

The original version of generalised geometry was extended by Hull [21] and Pacheco

and Waldram [22] to include the symmetries appearing in M theory. This gives a gen-

eralised tangent space E ≃ TM ⊕ Λ2T ∗M ⊕ Λ5T ∗M ⊕
(

T ∗M ⊗ Λ7T ∗M
)

, relevant to

eleven-dimensional supergravity restricted to d ≤ 7 dimensions and admitting a natural

Ed(d) structure. One can construct the corresponding generalised metric and also the ana-

logue of the Courant bracket. Applied to type II theories, it allowed the geometrisation of

the RR fields and was then used to study the origin of general gaugings of supergravity [52]

and to reformulate the effective theory of generic supergravity compactifications to four

dimensions as well as the conditions for existence of a supersymmetric background [53, 54].

The generalised tangent space contains objects familiar from Riemannian geometry,

namely a bracket structure, covariant derivatives, torsion, and by introducing the gen-

eralised metric, the analogue of the Levi-Civita connection, and curvature tensors. Still,

there are important differences with respect to ordinary geometry, such as the failure of the

generalised bracket to satisfy the Jacobi identity and the fact that, unlike the Levi-Civita

connection, there is a family of torsion-free, metric-compatible generalised connections.

We discuss all these concepts for Ed(d) × R
+ generalised geometry with a local compact

subgroup Hd ⊂ Ed(d) in a manner that treats all dimensions uniformly by decomposing

under the appropriate GL(d,R) and O(d) subgroups. By constructing the natural gener-

alised geometrical equivalent of Einstein gravity, we then find that it contains the entire

bosonic supergravity field content — metric, warp factor, three- and dual six-form gauge

fields — and precisely describes eleven-dimensional supergravity reduced to d dimensions

in the simple forms (1.1) and (1.2).

The paper is arranged as follows. In section 2 we describe the key concepts of Ed(d)×R
+

generalised geometry, including the generalised tangent bundle, its differential structure

and the notions of generalised connection and torsion. Next, in section 3 we introduce the

local Hd structure and show that one can always construct a torsion-free, Hd-compatible

generalised connection D, the analogue of the Levi-Civita connection. Finally, in section 4

we review the bosonic sector of restrictions of eleven-dimensional supergravity and show

1Note that the term “generalised geometry” is sometimes used to refer to formulations where spacetime

is extended to include more coordinates. Although the two notions are closely related, here we will limit it to

the narrow sense of structures on a Courant algebroid as first introduced by Hitchin and Gualtieri [19, 20],

and the related extensions relevant to M theory.
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that it can be reformulated in terms of the generalised geometry. We also comment on

the relation to type II theories, generic flux compactifications and the embedding tensor

formalism of gauged supergravity [55–57]. We conclude with some summary and discussion

in section 5.

2 Ed(d) × R
+ generalised geometry

Following closely the construction given in section 3 of [23], we introduce the generalised

geometry versions of the tangent space, frame bundle, Lie derivative, connections and

torsion, now in the more subtle context of an Ed(d) × R
+ structure. The Ed(d) generalised

tangent space was first developed in [21] and independently in [22], where the exceptional

Courant bracket was also given for the first time. We slightly generalise those notions by

introducing an R
+ factor, known as the “trombone symmetry” [58], as it allows one to

specify the isomorphism between the generalised tangent space and a sum of vectors and

forms. Physically, it is known to be related to the “warp factor” of warped supergravity

reductions. The need for this extra factor in the context of E7(7) geometries has already

been identified in [12, 13, 18, 59].

2.1 Generalised bundles and frames

2.1.1 Generalised tangent space

We start by recalling the definition of the generalised tangent space for Ed(d) × R
+ gener-

alised geometry [21, 22] and defining what is meant by the “generalised structure”.

Let M be a d-dimensional spin manifold with d ≤ 7. The generalised tangent space is

isomorphic to a sum of tensor bundles

E ≃ TM ⊕ Λ2T ∗M ⊕ Λ5T ∗M ⊕
(

T ∗M ⊗ Λ7T ∗M
)

, (2.1)

where for d < 7 some of these terms will of course be absent. The isomorphism is not

unique. The bundle is actually described using a specific patching. If we write

V(i) = v(i) + ω(i) + σ(i) + τ(i)

∈ Γ
(

TUi ⊕ Λ2T ∗Ui ⊕ Λ5T ∗Ui ⊕
(

T ∗Ui ⊗ Λ7T ∗Ui

))

,
(2.2)

for a section of E over the patch Ui, then

V(i) = edΛ(ij)+dΛ̃(ij)V(j), (2.3)

on the overlap Ui ∩ Uj where Λ(ij) and Λ̃(ij) are locally two- and five-forms respectively.

The exponentiated action is given by

v(i) = v(j),

ω(i) = ω(j) + iv(j)dΛ(ij),

σ(i) = σ(j) + dΛ(ij) ∧ ω(j) +
1

2
dΛ(ij) ∧ iv(j)dΛ(ij) + iv(j)dΛ̃(ij),

τ(i) = τ(j) + jdΛ(ij) ∧ σ(j) − jdΛ̃(ij) ∧ ω(j) + jdΛ(ij) ∧ iv(j)dΛ̃(ij)

+
1

2
jdΛ(ij) ∧ dΛ(ij) ∧ ω(j) +

1

6
jdΛ(ij) ∧ dΛ(ij) ∧ iv(j)dΛ(ij),

(2.4)
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where we are using the notation of (B.4). Technically this defines E as a result of a series

of extensions
0 −→ Λ2T ∗M −→ E′′ −→ TM −→ 0,

0 −→ Λ5T ∗M −→ E′ −→ E′′ −→ 0,

0 −→ T ∗M ⊗ Λ7T ∗M −→ E −→ E′ −→ 0.

(2.5)

Note that while the v(i) globally are equivalent to a choice of vector, the ω(i), σ(i) and τ(i)
are not globally tensors.

Note that the collection Λ(ij) formally define a “connective structures on gerbe” (for

a review see, for example, [60]). This essentially means there is a hierarchy of successive

gauge transformations on the multiple intersections

Λ(ij) + Λ(jk) + Λ(ki) = dΛ(ijk) on Ui ∩ Uj ∩ Uk,

Λ(jkl) − Λ(ikl) + Λ(ijl) − Λ(ijk) = dΛ(ijkl) on Ui ∩ Uj ∩ Uk ∩ Ul.
(2.6)

If the supergravity flux is quantised, we will have g(ijkl) = eiΛ(ijkl) ∈ U(1) with the cocycle

condition

g(jklm)g
−1
(iklm)g(ijlm)g

−1
(ijkm)g(ijkl) = 1, (2.7)

on Ui ∩ · · · ∩ Um. For Λ̃(ij) there is a similar set of structures,

Λ̃(ij) − Λ̃(ik) + Λ̃(jk)

= dΛ̃(ijk) +
1

2

1

3!

(

Λ(ij) ∧ dΛ(jk) + antisymmetrisation in [ijk]
)

on Ui ∩ Uj ∩ Uk,

Λ̃(ijk) − Λ̃(ijl) + Λ̃(ikl) − Λ̃(jkl)

= dΛ̃(ijkl) +
1

2

1

4!

(

Λ(ijk) ∧ dΛ(kl) + antisymmetrisation in [ijkl]
)

on Ui ∩ Uj ∩ Uk ∩ Ul,

etc.

(2.8)

with the final cocycle condition defined on a octuple intersection Ui1 ∩ · · · ∩Ui8 . Note that

this gives a generalisation of the conventional gerbe structure, where the Λ̃(ij) connective

structure depends on the Λ(ij) gerbe, ultimately reflecting the Chern-Simons coupling in

eleven-dimensional supergravity [61].

The bundle E encodes all the topological information of the supergravity background:

the twisting of the tangent space TM as well as that of the gerbes, which encode the

topology of the supergravity form-field potentials.

2.1.2 Generalised Ed(d) × R
+ structure bundle and split frames

In all dimensions2 d ≤ 7 the fibre Ex of the generalised vector bundle at x ∈ M forms a

representation space of Ed(d) × R
+ [21, 22]. These are listed in table 1. They correspond

to the set of U-dual momentum and brane central charges in the corresponding dimen-

sionally reduced theories [26], and also appear in the dimensional reduction of West’s E11

theory [62–64].

2In fact the d ≤ 2 cases essentially reduce to normal Riemannian geometry, so in what follows we will

always take d ≥ 3.
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As we discuss below, the explicit action is defined using the GL(d,R) subgroup that

acts on the component spaces TxM , Λ2T ∗
xM , Λ5T ∗

xM and T ∗
xM ⊗ Λ7T ∗

xM . Note that

without the additional R+ action, sections of E would transform as tensors weighted by a

power of detT ∗M . Thus it is key to extend the action to Ed(d) × R
+ in order to define E

directly as the extension (2.5).

Crucially, the patching defined in (2.3) is compatible with this Ed(d)×R
+ action. This

means that one can define a generalised structure bundle as a sub-bundle of the frame

bundle F for E. Let
{

ÊA

}

be a basis for Ex, where the label A runs over the dimension

n of the generalised tangent space as listed in table 1. The frame bundle F formed from

all such bases is, by construction, a GL(n,R) principal bundle. We can then define the

generalised structure bundle as the natural Ed(d)×R
+ principal sub-bundle of F compatible

with the patching (2.3) as follows.

Let êa be a basis for TxM and ea the dual basis for T ∗
xM . We can use these to construct

an explicit basis of Ex as

{

ÊA

}

=
{

êa
}

∪
{

eab
}

∪
{

ea1...a5
}

∪
{

ea,a1...a7
}

, (2.9)

where ea1...ap = ea1 ∧ · · · ∧ eap and ea,a1...a7 = ea ⊗ ea1 ∧ · · · ∧ ea7 . A generic section of E at

x ∈ Ui takes the form

V = V AÊA = vaêa +
1

2
ωabe

ab +
1

5!
σa1...a5e

a1...a5 +
1

7!
τa,a1...a7e

a,a1...a7 . (2.10)

As usual, a choice of coordinates on Ui defines a particular such basis where
{

ÊA

}

=
{

∂/∂xm
}

∪
{

dxm ∧ dxn
}

∪ . . . . We will denote the components of V in such a coordinate

frame by an index M , namely VM = (vm, ωmn, σm1...m5 , τm,m1...m7).

We then define a Ed(d)×R
+ basis as one related to (2.9) by an Ed(d)×R

+ transformation

V A 7→ V ′A =MA
BV

B, ÊA 7→ Ê′
A = ÊB

(

M−1
)B

A, (2.11)

where the explicit action of M is defined in appendix C. The action has a GL(d,R) sub-

group that acts in a conventional way on the bases êa, e
ab etc, and includes the patching

transformation (2.3).3

The fact that the definition of the Ed(d) × R
+ action is compatible with the patching

means that we can then define the generalised Ed(d)×R
+ structure bundle F̃ as a sub-bundle

of the frame bundle for E given by

F̃ =
{(

x,
{

ÊA

}

)

: x ∈M , and
{

ÊA

}

is an Ed(d) × R
+ basis of Ex

}

. (2.12)

By construction, this is a principal bundle with fibre Ed(d) × R
+. The bundle F̃ is the

direct analogue of the frame bundle of conventional differential geometry, with Ed(d) ×R
+

playing the role of GL(d,R).

3In analogy to the definitions for O(d, d) × R
+ generalised geometry [23], we could equivalently define

an Ed(d) × R
+ basis using invariants constructed from sections of E. For example, in d = 7 there is a

natural symplectic pairing and symmetric quartic invariant that can be used to define E7(7) (in the context

of generalised geometry see [22]). However, these invariants differ in different dimension d so it is more

useful here to define Ed(d) by an explicit action.
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Ed(d) group Ed(d) × R
+ rep.

E7(7) 561

E6(6) 27′1

E5(5) ≃ Spin(5, 5) 16c1

E4(4) ≃ SL(5,R) 10′1

E3(3) ≃ SL(3,R)× SL(2,R) (3′,2)1

Table 1. Generalised tangent space representations where the subscript denotes the R
+ weight,

where 11 ≃ (detT ∗M)1/(9−d).

A special class of Ed(d) ×R
+ frames are those defined by a splitting of the generalised

tangent space E, that is, an isomorphism of the form (2.1). Let A and Ã be three- and

six-form (gerbe) connections patched on Ui ∩ Uj by

A(i) = A(j) + dΛ(ij),

Ã(i) = Ã(j) + dΛ̃(ij) −
1

2
dΛ(ij) ∧A(j).

(2.13)

Note that from these one can construct the globally defined field strengths

F = dA(i),

F̃ = dÃ(i) −
1

2
A(i) ∧ F.

(2.14)

Given a generic basis {êa} for TM with {ea} the dual basis on T ∗M and a scalar function

∆, we define a conformal split frame
{

ÊA

}

for E by

Êa = e∆
(

êa + iêaA+ iêaÃ+
1

2
A ∧ iêaA

+jA ∧ iêaÃ+
1

6
jA ∧A ∧ iêaA

)

,

Êab = e∆
(

eab +A ∧ eab − jÃ ∧ eab + 1

2
jA ∧A ∧ eab

)

,

Êa1...a5 = e∆ (ea1...a5 + jA ∧ ea1...a5) ,
Êa,a1...a7 = e∆ea,a1...a7 ,

(2.15)

while a split frame has the same form but with ∆ = 0. To see that A and Ã define an

isomorphism (2.1) note that, in the conformal split frame,

V (A,Ã,∆) = e−∆e−A(i)−Ã(i)V(i)

= vaêa +
1

2
ωabe

ab +
1

5!
σa1...a5e

a1...a5 +
1

7!
τa,a1...a7e

a,a1...a7

∈ Γ
(

TM ⊕ Λ2T ∗M ⊕ Λ5T ∗M ⊕
(

T ∗M ⊗ Λ7T ∗M
))

,

(2.16)

since the patching implies e−A(i)−Ã(i)V(i) = e−A(j)−Ã(j)V(j) on Ui ∩ Uj .
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dimension E∗ ad F̃ ⊂ E ⊗ E∗ N ⊂ S2E K ⊂ E∗ ⊗ ad F̃

7 56−1 1330 + 10 133+2 912−1

6 27−1 780 + 10 27+2 351′−1

5 16s−1 450 + 10 10+2 144c−1

4 10−1 240 + 10 5+2 40−1 + 15′−1

3 (3,2)−1 (8,1)0 + (1,3)0 + 10 (3,1)+2 (3,2)−1 + (6′,2)−1

Table 2. Some generalised tensor bundles.

The class of split frames defines a sub-bundle of F̃

Psplit =
{(

x,
{

ÊA

}

)

: x ∈M , and
{

ÊA

}

is split frame
}

⊂ F̃ . (2.17)

Split frames are related by transformations (2.11) where M takes the form M = ea+ãm

with m ∈ GL(d,R). The action of a + ã shifts A 7→ A + a and Ã 7→ Ã + ã. This forms

a parabolic subgroup Gsplit = GL(d,R) ⋉ (a+ ã)-shifts ⊂ Ed(d) × R
+ where (a+ ã)-shifts

is the nilpotent group of order two formed of elements M = ea+ã. Hence Psplit is a Gsplit

principal sub-bundle of F̃ , that is a Gsplit-structure. This reflects the fact that the patching

elements in the definition of E lie only in this subgroup of Ed(d) × R
+.

2.1.3 Generalised tensors

Generalised tensors are simply sections of vector bundles constructed from the generalised

structure bundle using different representations of Ed(d) × R
+. We have already discussed

the generalised tangent space E. There are four other vector bundles which will be of partic-

ular importance in the following. The relevant representations are summarised in table 2.4

The first is the dual generalised tangent space

E∗ ≃ T ∗M ⊕ Λ2TM ⊕ Λ5TM ⊕
(

TM ⊗ Λ7TM
)

. (2.18)

Given a basis
{

ÊA

}

for E we have a dual basis
{

EA
}

on E∗ and sections of E∗ can be

written as Z = ZAE
A.

Next we then have the adjoint bundle ad F̃ associated with the Ed(d) × R
+ principal

bundle F̃

ad F̃ ≃ R⊕ (TM ⊗ T ∗M)⊕ Λ3T ∗M ⊕ Λ6T ∗M ⊕ Λ3TM ⊕ Λ6TM. (2.19)

By construction ad F̃ ⊂ E ⊗ E∗ and hence we can write sections as R = RA
BÊA ⊗ EB.

We write the projection on the adjoint representation as

×ad : E∗ ⊗ E → ad F̃ . (2.20)

It is given explicitly in (C.13).

4Note that these representations have already appeared in both the dimensional reduction of the E11

theory [62–64] and the tensor hierarchy formulation of gauged supergravity [65, 66].

– 9 –



J
H
E
P
0
2
(
2
0
1
4
)
0
5
4

We also consider the sub-bundle of the symmetric product of two generalised tangent

bundles N ⊂ S2E,

N ≃ T ∗M ⊕ Λ4T ∗M ⊕
(

T ∗M ⊗ Λ6T ∗M
)

⊕
(

Λ3T ∗M ⊗ Λ7T ∗M
)

⊕
(

Λ6T ∗M ⊗ Λ7T ∗M
)

.
(2.21)

We can write sections as Y = Y ABÊA ⊗ ÊB with the projection

×N : E ⊗ E → N. (2.22)

It is given explicitly in (C.15).

Finally, we also need the higher dimensional representation K ⊂ E∗ ⊗ ad F̃ listed in

the last column of table 2. Decomposing under GL(d,R) one has

K ≃ T ∗M ⊕ S2TM ⊕ Λ2TM ⊕
(

Λ2T ∗M ⊗ TM
)

0
⊕
(

Λ3TM ⊗ T ∗M
)

0

⊕ Λ4T ∗M ⊕
(

Λ4TM ⊗ TM
)

0
⊕ Λ5TM ⊕

(

Λ2TM ⊗ Λ6TM
)

0

⊕ Λ7T ∗M ⊕
(

TM ⊗ Λ7TM
)

⊕
(

Λ7TM ⊗ Λ7TM
)

⊕
(

S2T ∗M ⊗ Λ7TM
)

⊕
(

Λ4TM ⊗ Λ7TM
)

,

(2.23)

where, in fact, the Λ5TM term is absent when d = 5. Note also that the zero subscripts

are defined such that

amn
n = 0, if a ∈ Γ

((

Λ2T ∗M ⊗ TM
)

0

)

,

amnp
p = 0, if a ∈ Γ

((

Λ3TM ⊗ T ∗M
)

0

)

,

a[m1m2m3m4,m5] = 0, if a ∈ Γ
((

Λ4TM ⊗ TM
)

0

)

,

am[n1,n2...,n7] = 0, if a ∈ Γ
((

Λ2TM ⊗ Λ6TM
)

0

)

.

(2.24)

Since K ⊂ E∗ ⊗ ad F̃ we can write sections as T = T B
A CE

A ⊗ ÊB ⊗ EC .

It is interesting to note that, up to symmetries of the Ed Dynkin diagram, the Dynkin

labels of the representations E and N follow patterns as d varies. For each value of d, the

Dynkin label for E can be represented on the Dynkin diagram as

while N has the label

2.2 The Dorfman derivative and Courant bracket

An important property of the generalised tangent space is that it admits a generalisation

of the Lie derivative which encodes the bosonic symmetries of the supergravity. Given

V = v+ω+σ+τ ∈ Γ (E), one can define an operator LV acting on any generalised tensor,

which combines the action of an infinitesimal diffeomorphism generated by v and A- and

Ã-field gauge transformations generated by ω and σ. Formally this gives E the structure

of a “Leibniz algebroid” [59].
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Acting on V ′ = v′ + ω′ + σ′ + τ ′ ∈ Γ (E), one defines the Dorfman derivative5 or

“generalised Lie derivative”

LV V
′ = Lvv

′ +
(

Lvω
′ − iv′dω

)

+
(

Lvσ
′ − iv′dσ − ω′ ∧ dω

)

+
(

Lvτ
′ − jσ′ ∧ dω − jω′ ∧ dσ

)

.
(2.25)

Defining the action on a function f as simply LV f = Lvf , one can then extend the

notion of Dorfman derivative to a derivative on the space of Ed(d) × R
+ tensors using the

Leibniz property.

To see this, first note that we can rewrite (2.25) in a more Ed(d) × R
+ covariant way,

in analogy with the corresponding expressions for the conventional Lie derivative and the

Dorfman derivative in O(d, d)× R
+ generalised geometry [23]. One can embed the action

of the partial derivative operator via the map T ∗M → E∗ defined by the dual of the

exact sequences (2.5). In coordinate indices M , as viewed as mapping to a section of E∗,

one defines

∂M =

{

∂m for M = m

0 otherwise
. (2.26)

Such an embedding has the property that under the projection onto N∗ we have

∂f ×N∗ ∂g = 0, (2.27)

for arbitrary functions f, g. We will comment on this observation in section 2.4.

One can then rewrite (2.25) in terms of generalised objects as

LV V
′M = V N∂NV

′M − (∂ ×ad V )MNV
′N , (2.28)

where ×ad denotes the projection onto ad F̃ given in (2.20). Concretely, from (C.13)

we have

∂ ×ad V = r + a+ ã, (2.29)

where rmn = ∂nv
m, a = dω and ã = dσ. We see that the action actually lies in the adjoint

of the Gsplit ⊂ Ed(d)×R
+ group. This form of the Dorfman derivative can then be naturally

extended to an arbitrary Ed(d) × R
+ tensor by taking that appropriate adjoint action on

the Ed(d) × R
+ representation.

Note that we can also define a bracket by taking the antisymmetrisation of the Dorfman

derivative. This was originally given in [22] where it was called the “exceptional Courant

bracket”, and re-derived in [59]. It is given by

q
V, V ′

y
=

1

2

(

LV V
′ − LV ′V

)

=
[

v, v′
]

+ Lvω
′ − Lv′ω − 1

2
d
(

ivω
′ − iv′ω

)

+ Lvσ
′ − Lv′σ − 1

2
d
(

ivσ
′ − iv′σ

)

+
1

2
ω ∧ dω′ − 1

2
ω′ ∧ dω

+
1

2
Lvτ

′ − 1

2
Lv′τ +

1

2

(

jω ∧ dσ′ − jσ′ ∧ dω
)

− 1

2

(

jω′ ∧ dσ − jσ ∧ dω′
)

.

(2.30)

5The corresponding object on a Courant algebroid, where the generalised structure is O(d, d) is known

as the Dorfman bracket and, following [59], we use the same nomenclature in this case too.
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Note that the group generated by closed A and Ã shifts is a semi-direct product Ω3
cl(M)⋉

Ω6
cl(M) and corresponds to the symmetry group of gauge transformations in the super-

gravity. The full automorphism group of the exceptional Courant bracket is then the local

symmetry group of the supergravity Gsugra = Diff(M)⋉
(

Ω3
cl(M)⋉ Ω6

cl(M)
)

.

For U, V,W ∈ Γ (E), the Dorfman derivative also satisfies the Leibniz identity

LU (LVW )− LV (LUW ) = LLUVW, (2.31)

and hence E is a “Leibniz algebroid”. On first inspection, one might expect that the

bracket of JU, V K should appear on the r.h.s. . However, the statement is correct since one

can show that

LJU,V KW = LLUVW, (2.32)

so that the r.h.s. is automatically antisymmetric in U and V .

2.3 Generalised Ed(d) × R
+ connections and torsion

We now turn to the definitions of generalised connections and torsion. Generalised con-

nections on algebroids were first introduced by Alekseev and Xu [67, 68]. To study the

dynamics of E7(7) geometries with an eleven-dimensional supergravity origin and super-

symmetric backgrounds, related notions were also developed by [12, 13, 54]. Here, for the

Ed(d) × R
+ case, we follow much the same procedure and conventions as in [23], where we

gave the precise definitions relevant for type II supergravity, taking care to include an R
+

factor in the generalised structure bundle.

2.3.1 Generalised connections

We first define generalised connections that are compatible with the Ed(d) × R
+ struc-

ture. These are first-order linear differential operators D, such that, given W ∈ Γ (E), in

frame indices,

DMW
A = ∂MW

A +ΩM
A
BW

B, (2.33)

where Ω is a section of E∗ (denoted by the M index) taking values in Ed(d) ×R
+ (denoted

by the A and B frame indices), and as such, the action of D then extends naturally to any

generalised Ed(d) × R
+ tensor.

A simple example of a generalised connection can be constructed as follows. One starts

with a conventional connection ∇ and a conformal split frame of the form (2.15). Given

the isomorphism (2.16), by construction vaêa ∈ Γ (TM), 1
2ωabe

ab ∈ Γ
(

Λ2T ∗M
)

etc and

hence ∇mv
a and ∇mωab are well-defined. The generalised connection defined by ∇ lifted

to an action on E by the conformal split frame then defines a generalised connection D∇ as

D∇
MV =























(∇mv
a)Êa +

1

2
(∇mωab)Ê

ab

+
1

5!
(∇mσa1...a5)Ê

a1...a5 +
1

7!
(∇mτa,a1...a7)Ê

a,a1...a7
for M = m,

0 otherwise.

(2.34)
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2.3.2 Generalised torsion

We define the generalised torsion T of a generalised connection D in direct analogy to the

conventional definition and to the one we defined in the O(d, d) × R
+ description of type

II theories [23].

Let α be any generalised Ed(d)×R
+ tensor and let LD

V α be the Dorfman derivative (2.28)

with ∂ replaced by D. The generalised torsion is a linear map T : E → ad
(

F̃
)

defined by

T (V ) · α = LD
V α− LV α, (2.35)

for any V ∈ Γ (E) and where T (V ) acts via the adjoint representation on α. Let
{

ÊA

}

be

an Ed(d) ×R
+ frame for E and

{

EA
}

be the dual frame for E∗ satisfying EA
(

ÊB

)

= δAB.

We then have the explicit expression

T (V ) = V C
[

Ω A
C B − Ω A

B C − EA
(

LÊC
ÊB

)]

ÊA ×ad E
B. (2.36)

Note that we are projecting onto the adjoint representation on the A and B indices. Note

also that in a coordinate frame the last term vanishes.

Viewed as a generalised Ed(d) × R
+ tensor we have T ∈ Γ

(

E∗ ⊗ ad F̃
)

. However, the

form of the Dorfman derivative means that fewer components actually survive and we find

T ∈ Γ (K ⊕ E∗) , (2.37)

where K was defined in table 2. Note that these representations are exactly the same

ones that appear in the embedding tensor formulation of gauged supergravities [55, 56],

including gaugings [57] of the so-called “trombone” symmetry [58]. We will comment on

this further in section 4.4.

As an example, we can calculate the torsion of the generalised connection D∇ defined

by a conventional connection ∇ and a conformal split frame as given in (2.34). We find

T (V ) = e∆
(

− ivd∆ + v ⊗ d∆ + ivT − ivF + d∆ ∧ ω + T · ω
+ ω ∧ F + d∆ ∧ σ − ivF̃ + T · σ

)

,
(2.38)

where we are using the isomorphism (2.19), F and F̃ are the field strengths (2.14), T is the

conventional torsion of ∇ and we use the notation (ivT )
µ
ν = vλTµ

λν and (T · λ)µ1...µp =
p!

(p−2)!2!T
ν
[µ1µ2

λ|ν|µ3...µp].

2.4 The “section condition”, Jacobi identity and the absence of generalised

curvature

Restricting our analysis to d ≤ 6, we find that the bundle N given in (2.21) measures the

failure of the generalised tangent bundle to satisfy the properties of a Lie algebroid. This

follows from the observation that the difference between the Dorfman derivative and the

exceptional Courant bracket (that is, the symmetric part of the Dorfman derivative), for

V, V ′ ∈ Γ (E), is precisely given by6

LV V
′ −

q
V, V ′

y
=

1

2
d
(

ivω
′ + iv′ω − ivσ

′ − iv′σ + ω ∧ ω′
)

= ∂ ×E (V ×N V ′), (2.39)

6For d ≥ 7 the r.h.s. can no longer be written covariantly as a derivative of an Ed(d) × R
+ tensor built

from U and V . Similar complications occur in the discussion of the curvature below. This is the reason for

the restriction to d ≤ 6 in this section.
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where the last equality stresses the Ed(d) × R
+ covariant form of the exact term. There-

fore, while the Dorfman derivative satisfies a sort of Jacobi identity via the Leibniz iden-

tity (2.31), the Jacobiator of the exceptional Courant bracket, like that of the O(d, d)

Courant bracket, does not vanish in general. In fact, it can be shown that

Jac(U, V,W ) = JJU, V K ,W K + c.p. =
1

3
∂ ×E (JU, V K ×N W + c.p.) , (2.40)

where U, V,W ∈ Γ (E) and c.p. denotes cyclic permutations in U, V and W . We see that

both the failure of the exceptional Courant bracket to be Jacobi and the Dorfman derivative

to be antisymmetric is measured by an exact term given by the ×N projection. The proof

is essentially the same as the one for the O(d, d) case, see for example [20], section 3.2.7

Similarly, and as was the case with O(d, d)×R
+ generalised connections, for notions of

generalised curvature one finds the naive definition [DU , DV ]W −DJU,V KW is not a tensor

and its failure to be covariant is measured by the projection of the first two arguments to

N . Explicitly, taking U → fU , V → gV and W → hW for some scalar functions f, g, h,

we obtain

[DfU , DgV ]hW −DJfU,gV KhW

= fgh
(

[DU , DV ]W −DJU,V KW
)

− 1

2
hD(f∂g−g∂f)×E(U×NV )W.

(2.41)

Note, however, that it is still possible to define analogues of the Ricci tensor and scalar

when there is additional structure on the generalised tangent space, as we see in the

following section.

Finally, we note that from the point of view of “double field theory”-like geometries [14–

18, 34, 38–43], the equation

∂f ×N∗ ∂g = 0, (2.42)

for any functions f and g acquires a special interpretation. In these theories, one starts

by enlarging the spacetime manifold so that its dimension matches that of the generalised

tangent space. The partial derivative ∂Mf is then generically non-zero for allM . However,

the corresponding Dorfman derivative does not then satisfy the Leibniz property, nor is the

action for the generalised metric invariant. One must instead impose a “section condition”

or “strong constraint”. In the original O(d, d) double field theory the condition takes

the form (∂Mf)(∂Mg) = 0. It implies that, in fact, the fields only depend on half the

coordinates. For exceptional geometries, the d = 4 case was thoroughly analysed in [17],

and is given by (2.42). Again it implies that the fields depend on only d of the coordinates.

It is in fact easy to show that satisfying (2.42) always implies the Leibniz property.

Thus it gives the section condition in general dimension. In generalised geometry it is

satisfied identically by taking ∂M of the form (2.26). However given the Ed(d)×R
+ covariant

form of the Dorfman derivative (2.28), any subspace of E∗ in the same orbit under Ed(d)×
R
+ will also satisfy the Leibniz condition. Note further that any such subspace, like T ∗, is

invariant under an action of the parabolic subgroup Gsplit.

7Note that in the O(d, d) case the fibre of N is the 1+2 representation, so N is a trivial bundle.
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Ed(d) group H̃d group adP⊥ = ad F̃ / adP

E7(7) SU(8) 35+ 3̄5+ 1

E6(6) USp(8) 42+ 1

E5(5) ≃ Spin(5, 5) Spin(5)× Spin(5) (5,5) + (1,1)

E4(4) ≃ SL(5,R) Spin(5) 14+ 1

E3(3) ≃ SL(3,R))× SL(2,R) Spin(3)× Spin(2) (5,1) + (1,2) + (1,1)

Table 3. Double covers of the maximal compact subgroups of Ed(d) and Hd representations of the

coset bundle.

3 Hd structures and torsion-free connections

We now turn to the construction of the analogue of the Levi-Civita connection by consid-

ering additional structure on the generalised tangent space. Again, this closely follows the

constructions in O(d, d)× R
+ generalised geometry [23].

We considerHd structures on E whereHd is the maximally compact8 subgroup of Ed(d).

These, or rather their double covers9 H̃d are listed in table 3. We will then be interested

in generalised connections D that preserve the Hd structure. We find it is always possible

to construct torsion-free connections of this type but they are not unique. Nonetheless we

show that, using the Hd structure, one can construct unique projections of D, and that

these can be used to define analogues of the Ricci tensor and scalar curvatures with a local

Hd symmetry.

3.1 Hd structures and the generalised metric

An Hd structure on the tangent space is a set of frames related by Hd transformations.

This is the direct analogy of metric structure, where one considers the set of orthonormal

frames related by O(d) transformations. Formally it defines an Hd principal sub-bundle of

the generalised structure bundle F̃ , that is

P ⊂ F̃ with fibre Hd. (3.1)

The choice of such a structure is parametrised, at each point on the manifold, by an element

of the coset (Ed(d)×R
+)/Hd. The corresponding representations are listed in table 3. Note

that there is always a singlet corresponding to the R
+ factor.

8Note that one could equally consider the non-compact versions of Hd by switching the signature of the

metric in appendix C.3 so that it defines an SO(p, q) subgroup of GL(d,R), and the corresponding results

then follow identically. For instance, if in d = 7 one chooses the SO(6, 1) signature, one would obtain the

non-compact SU∗(8) subgroup of E7(7) ×R
+, which would be relevant for discussing timelike reductions of

11-dimensional supergravity [69].
9We give the double covers of the maximally compact group, since we will be interested in the analogues

of spinor representations. A necessary and sufficient condition for the existence of the double cover is

the vanishing of the 2nd Stiefel-Whitney class of the generalised tangent bundle [21]. As the underlying

manifold is spin by assumption, this is automatically satisfied.
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One can construct elements of P concretely, that is, identify the analogues of

“orthonormal” frames, in the following way. Given an Hd structure, it is always possible

to put the Hd frame in a conformal split form, namely,

Êa = e∆
(

êa + iêaA+ iêaÃ+
1

2
A ∧ iêaA

+jA ∧ iêaÃ+
1

6
jA ∧A ∧ iêaA

)

,

Êab = e∆
(

eab +A ∧ eab − jÃ ∧ eab + 1

2
jA ∧A ∧ eab

)

,

Êa1...a5 = e∆ (ea1...a5 + jA ∧ ea1...a5) ,
Êa,a1...a7 = e∆ea,a1...a7 .

(3.2)

Any other frame is then related by an Hd transformation of the form given in appendix C.3.

Concretely given V=V AÊA∈Γ (E) expanded in such a frame, different frames are related by

V A 7→ V ′A = HA
BV

B, ÊA 7→ Ê′
A = ÊB

(

H−1
)B

A, (3.3)

where H is defined in (C.19). Note that the O(d) ⊂ Hd action simply rotates the êa basis,

defining a set of orthonormal frames for a conventional metric g. It also keeps the frame

in the conformal split form. Thus the set of conformal split Hd frames actually forms an

O(d) structure on E, that is

(P ∩ Psplit) ⊂ F̃ with fibre O(d). (3.4)

One can also define the generalised metric acting on V ∈ Γ (E) as

G(V, V ) = v2 +
1

2!
ω2 +

1

5!
σ2 +

1

7!
τ2, (3.5)

v2 = vav
a, ω2 = ωabω

ab, etc as in (B.5), are evaluated in an Hd frame and indices are con-

tracted using the flat frame metric δab (as used to define the Hd subgroup in appendix C.3).

Since, by definition, this is independent of the choice of Hd frame, it can be evaluated in

the conformal split representative (3.2). Hence one sees explicitly that the metric is defined

by the fields g, A, Ã and ∆ that determine the coset element.

Note that the Hd structure embeds as Hd ⊂ Ed(d) ⊂ Ed(d) × R
+. This mirrors the

chain of embeddings in Riemannian geometry SO(d) ⊂ SL(d,R) ⊂ GL(d,R) which allows

one to define a detT ∗M density that is SO(d) invariant,
√
g. Likewise, here we can define

a density that is Hd (and Ed(d)) invariant, corresponding to the choice of R+ factor which,

in terms of the conformal split frame, is given by

volG =
√
g e(9−d)∆, (3.6)

as can be seen from appendix C.1. This can also be defined as the determinant of G to a

suitable power.
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3.2 Torsion-free, compatible connections

A generalised connection D is compatible with the Hd structure P ⊂ F̃ if

DG = 0, (3.7)

or, equivalently, if the derivative acts only in the Hd sub-bundle. In this subsection we will

show, in analogy to the construction of the Levi-Civita connection, that

Given an Hd structure P ⊂ F̃ there always exists a torsion-free, compatible

generalised connection D. However, it is not unique.

We construct the compatible connection explicitly by working in the conformal split Hd

frame (3.2). However the connection is Hd covariant, so the form in any another frame

simply follows from an Hd transformation.

Let ∇ be the Levi-Civita connection for the metric g. We can lift the connection to

an action on V ∈ Γ (E) by defining, as in (2.34),

D∇
MV =























(∇mv
a)Êa +

1

2
(∇mωab)Ê

ab

+
1

5!
(∇mσa1...a5)Ê

a1...a5 +
1

7!
(∇mτa,a1...a7)Ê

a,a1...a7
for M = m,

0 otherwise.

(3.8)

Since ∇ is compatible with the O(d) ⊂ Hd subgroup, it is necessarily an Hd-compatible

connection. However, D∇ is not torsion-free. From (2.38), since ∇ is torsion-free (in the

conventional sense), we have

T (V ) = e∆
(

−ivd∆ + v ⊗ d∆− ivF + d∆ ∧ ω − ivF̃ + ω ∧ F + d∆ ∧ σ
)

. (3.9)

To construct a torsion-free compatible connection we simply modify D∇. A generic

generalised connection D can always be written as

DMW
A = D∇

MW
A +ΣM

A
BW

B. (3.10)

If D is compatible with the Hd structure then

Σ ∈ Γ (E∗ ⊗ adP ) , (3.11)

that is, it is a generalised covector taking values in the adjoint of Hd. The problem is then

to find a suitable Σ such that the torsion of D vanishes. Fortunately, decomposing under

Hd one finds that all the representations that appear in the torsion are already contained

in Σ. Thus a solution always exists, but is not unique.10 The relevant representations are

listed in table 4. As Hd tensor bundles one has

E∗ ⊗ adP ≃ (K ⊕ E∗)⊕ U, (3.12)

so that the torsion T ∈ Γ (K ⊕ E∗) and the unconstrained part of Σ is a section of U .

10In d = 3 all the components of Σ are contained in the torsion representations, E∗ ⊗ adP ≃ K ⊕ E∗,

and so, in that particular case, the generalised connection is in fact completely determined.
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dimension K ⊕ E∗ U ≃ (E∗ ⊗ adP )/(K ⊕ E∗)

7 28+ 2̄8+ 36+ 3̄6+ 420+ ¯420 1280+ ¯1280

6 27+ 36+ 315 594

5 (4,4) + (4,4) + (16,4) + (4,16) (20,4) + (4,20)

4 1+ 5+ 10+ 14+ 35′ 35

3 (1,2) + (3,2) + (3,2) + (5,2) -

Table 4. Components of the connection Σ that are constrained by the torsion, T , and the uncon-

strained ones, U , as Hd representations.

The solution for Σ can be written very explicitly as follows. Contracting with V ∈ Γ (E)

so Σ(V ) ∈ adP and using the basis for the adjoint of Hd given in (C.17) and (C.18) we have

Σ(V )ab = e∆
(

2

(

7− d

d− 1

)

v[a∂b]∆+
1

4!
ωcdF

cd
ab +

1

7!
σc1...c5F̃

c1...c5
ab +Q(V )ab

)

,

Σ(V )abc = e∆
(

6

(d− 1)(d− 2)
(d∆ ∧ ω)abc +

1

4
vdFdabc +Q(V )abc

)

,

Σ(V )a1...a6 = e∆
(

1

7
vbF̃ba1...a6 +Q(V )a1...a6

)

, (3.13)

where the ambiguous part of the connection Q ∈ Γ (E∗ ⊗ adP ) projects to zero under the

map to the torsion representation K ⊕ E∗, that is

Q ∈ Γ (U) . (3.14)

Using the embedding of H̃d in Cliff(d;R) given in (C.20) we can thus write the full

connection as

Da = e∆
(

∇a +
1

2

(

7− d

d− 1

)

(∂b∆)γa
b− 1

2

1

4!
Fab1b2b3γ

b1b2b3− 1

2

1

7!
F̃ab1...b6γ

b1...b6 + /Qa

)

,

Da1a2 = e∆
(

1

4

2!

4!
F a1a2

b1b2γ
b1b2 − 3

(d− 1)(d− 2)
(∂b∆)γa1a2b + /Qa1a2

)

,

Da1...a5 = e∆
(

1

4

5!

7!
F̃ a1...a5

b1b2γ
b1b2 + /Qa1...a5

)

,

Da,a1...a7 = e∆ (/Qa,a1...a7) , (3.15)

where

/Qm =
1

2

(

1

2!
Qm,abγ

ab − 1

3!
Qm,a1a2a3γ

a1a2a3 − 1

6!
Qm,a1...a6γ

a1...a6

)

,

/Qm1m2 =
1

2

(

1

2!
Qm1m2

abγ
ab − 1

3!
Qm1m2

a1a2a3γ
a1a2a3 − 1

6!
Qm1m2

a1...a6γ
a1...a6

)

,

etc.

(3.16)

is the embedding of the ambiguous part of the connection.11

11It is interesting to compare this connection to the one defined in [54]. There Σ is chosen to lie solely in

the 912 representation. This leads to a unique torsion-free connection, which is, however, not compatible

with the generalised metric.
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H̃d S J

SU(8) 8+ 8̄ 56+ 5̄6

USp(8) 8 48

USp(4)×USp(4) (4,1) + (1,4) (4,5) + (5,4)

USp(4) 4 16

SU(2)×U(1) 21 + 2−1 41 + 4−1 + 23 + 2−3

Table 5. Spinor and gravitino representations in each dimension.

3.3 Unique operators and generalised Hd curvatures

We now turn to the construction of unique operators and curvatures from the torsion-free

and H̃d-compatible connection D constructed in the previous section. To keep the H̃d

covariance manifest in all dimensions, we will necessarily have to maintain the discussion

in this section fairly abstract. We should note, however, that the entire construction can

be made very concrete. In [24] we will present the details for particular dimensions, such

as the d = 7 case where the unique operators and the curvatures can be explicitly written

out in H̃7 = SU(8) indices.

Given a bundle X transforming as some representation of H̃d, we define the map

QX : U ⊗X −→ E∗ ⊗X, (3.17)

via the embedding U ⊂ E∗ ⊗ adP and the adjoint action of adP on X. We then have the

projection

PX : E∗ ⊗X −→ E∗ ⊗X

ImQX
. (3.18)

Recall that the ambiguous part Q of the connection D is a section of U , which acts on

X via the map QX . If α ∈ Γ (X), then, by construction, PX(D ⊗ α) is uniquely defined,

independent of Q.

We can construct explicit examples of such operators as follows. Consider two real

H̃d bundles S and J , which we refer to as the “spinor” bundle and the “gravitino” bundle

respectively, since the supersymmetry parameter and the gravitino field in supergravity are

sections of them. The relevant H̃d representations are listed in table 5. Note that the spinor

representation is simply the Cliff(d;R) spinor representation using the embedding (C.20).

One finds that under the projection PX we have12

PS(E
∗ ⊗ S) ≃ S ⊕ J,

PJ(E
∗ ⊗ J) ≃ S ⊕ J.

(3.19)

12Note that there is an exception for d = 3 since, as was previously mentioned, in that case the entire

metric compatible, torsion-free connection is uniquely determined, and so PX is just the identity map and

PX(E∗ ⊗X) = E∗ ⊗X for any bundle X.

– 19 –



J
H
E
P
0
2
(
2
0
1
4
)
0
5
4

Therefore, for any ε ∈ Γ (S) and ψ ∈ Γ (J), one has that the following are unique for any

torsion-free connection
D ×J ε, D ×S ε,

D ×J ψ, D ×S ψ,
(3.20)

where ×X denotes the projection onto the X bundle.

One can show that the first two expressions encode the supersymmetry variation of the

internal and external gravitino respectively, while the latter two are related to the gravitino

equation of motion. This will be described in more detail in [24].

We would now like to define measures of generalised curvature. As was mentioned

in section 2.4, the natural definition of a Riemann curvature does not result in a tensor.

Nonetheless, for a torsion-free, H̃d-compatible connection D there does exist a generalised

Ricci tensor RAB, and it is a section of the bundle

adP⊥ = ad F̃ / adP ⊂ E∗ ⊗ E∗, (3.21)

where the last relation follows because, as representations of Hd, E ≃ E∗. It is not imme-

diately apparent that we can make such a definition, but RAB can in fact be constructed

from compositions of the unique operators (3.20) as

D ×J (D ×J ε) +D ×J (D ×S ε) = R0 · ε,

D ×S (D ×J ε) +D ×S (D ×S ε) = Rε,
(3.22)

where R and R0
AB provide the scalar and non-scalar parts of RAB respectively.13 The

existence of expressions of this type is a non-trivial statement. By computing in the

split frame, it can be shown that the l.h.s. is linear in ε, and since ε and the l.h.s. are

manifestly covariant, these expressions define a tensor. We will write the components

explicitly in section 4.2, equation (4.11). This calculation further provides the non-trivial

result that RAB is restricted to be a section of adP⊥, rather than a more general section

of (S ⊗ J) ⊕ R. In the context of supergravity, this calculation exactly corresponds to

the closure of the supersymmetry algebra on the fermionic equations of motion, as will be

discussed further in [24]. Finally, since it is built from unique operators, the generalised

curvature is automatically unique for a torsion-free compatible connection.

The expressions (3.22) can be written with a different sequence of projections. This

helps elucidate the nature of the curvature in terms of certain second-order differential op-

erators. In conventional differential geometry the commutator of two connections [∇m,∇n]

has no second-derivative term simply because the partial derivatives commute. This is a

necessary condition for the curvature to be tensorial. In Ed(d) indices one can similarly

write the commutator of two generalised derivatives formally as (D ∧ D)AB = [DA, DB].

More precisely, acting on an Ed(d) × R
+ vector bundle X we have

(D ∧D) : X → Λ2E∗ ⊗X. (3.23)

13Note that adP⊥ ⊂ (S ⊗ J)⊕R and the H̃d structure gives an isomorphism S ≃ S∗ and J ≃ J∗. Thus,

as in the first line of (3.22), we can also view R0 as a map from S to J .
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Since again the partial derivatives commute this operator contains no second-order deriva-

tive term, and so can potentially be used to construct a curvature tensor. However, in

Ed(d) × R
+ generalised geometry we also have ∂f ×N∗ ∂g = 0 for any f and g, and so we

can take the projection to the bundle N∗ defined earlier, giving a similar operator

(D ×N∗ D) : X → N∗ ⊗X, (3.24)

which will again contain no second-order derivatives. One thus expects that these two

operators, which can be defined for an arbitrary Ed(d)×R
+ connection, should appear in any

definition of generalised curvature. Given an H̃d structure and a torsion-free compatible

connection D, they indeed enter the definition of RAB. Using H̃d covariant projections

one finds
(D ∧D)×J ε+ (D ×N∗ D)×J ε = R0 · ε,
(D ∧D)×S ε+ (D ×N∗ D)×S ε = Rε.

(3.25)

This structure suggests there will be similar definitions of curvature in terms of the oper-

ators (D ∧ D) and (D ×N∗ D) independent of the representation on which they act, and

potentially without the need for additional structure.

4 Supergravity as Hd generalised geometry

We now show how the generalised geometrical structures we have described in the previous

sections allow us to rewrite the bosonic sector of eleven-dimensional supergravity with

the local Hd-covariance manifest. We also cover the relation to type II theories and the

embedding tensor formalism.

4.1 Eleven-dimensional supergravity in d-dimensions

We will be interested in “restrictions” of eleven-dimensional supergravity where the space-

time is assumed to be a product R
10−d,1 ×M of Minkowski space with a d-dimensional

spin manifold M , with d ≤ 7. The metric is taken to be

ds211 = e2∆ds2
(

R
10−d,1

)

+ ds2d(M), (4.1)

where ds2
(

R
10−d,1

)

is the flat metric on R
10−d,1 and ds2d(M) is a general metric onM . The

warp factor ∆ and all the other fields are assumed to be independent of the flat R
10−d,1

space. In this sense we restrict the full eleven-dimensional theory to M . We will split

the eleven-dimensional indices as external indices µ = 0, 1, . . . , ĉ − 1 and internal indices

m = 1, . . . , d where ĉ+ d = 11. The full eleven-dimensional theory and the conventions we

are using are summarised in appendix A.

In the restricted theory, the surviving fields include the obvious internal components

of the eleven-dimensional fields (namely the metric g and three-form A) as well as the

warp factor ∆. If d = 7, the eleven-dimensional Hodge dual of the 4-form F can have a

purely internal 7-form component. This leads one to introduce in addition a dual six-form

potential Ã on M which is related to the seven-form field strength F̃ by

F̃ = dÃ− 1

2
A ∧ F. (4.2)
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The Bianchi identities satisfied by F = dA and F̃ are then

dF = 0,

dF̃ +
1

2
F ∧ F = 0.

(4.3)

With these definitions we see that F and F̃ are related to the eleven dimensional 4-form

field strength F by

Fm1...m4 = Fm1...m4 , F̃m1...m7 = (∗11F)m1...m7
. (4.4)

One obtains the internal bosonic action

SB =
1

2κ2

∫ √
g eĉ∆

(

R+ ĉ(ĉ− 1)(∂∆)2 − 1

2

1

4!
F 2 − 1

2

1

7!
F̃ 2

)

, (4.5)

by requiring that its associated equations of motion

Rmn − ĉ∇m∇n∆− ĉ(∂m∆)(∂n∆)− 1

2

1

4!

(

4Fmp1p2p3Fn
p1p2p3 − 1

3
gmnF

2

)

−1

2

1

7!

(

7F̃mp1...p6F̃n
p1...p6 − 2

3
gmnF̃

2

)

= 0,

R− 2(ĉ− 1)∇2∆− ĉ(ĉ− 1)(∂∆)2 − 1

2

1

4!
F 2 − 1

2

1

7!
F̃ 2 = 0,

d ∗
(

eĉ∆F
)

− eĉ∆
(

∗ F̃
)

∧ F = 0,

d ∗
(

eĉ∆F̃
)

= 0,

(4.6)

are those obtained by substituting the field ansatz into (A.3).

Although here we are interested in the bosonic sector of supergravity, note that the

supersymmetry variations of the gravitino can also be written as

δρ = γm∇mǫ−
1

4

1

4!
γm1...m4Fm1...m4ǫ−

1

4

1

7!
F̃m1...m7γ

m1...m7ǫ+
ĉ− 2

2
(γm∂m∆)ǫ,

δψm = ∇mǫ+
1

288
(γm

n1...n4 − 8δm
n1γn2n3n4)Fn1...n4ǫ−

1

12

1

6!
F̃mn1...n6γ

n1...n6ǫ,

(4.7)

where ρ is related to the trace of the gravitino in the external space and γm are Cliff(d;R)

gamma matrices. These expressions will be discussed in more detail in [24].

4.2 Reformulation as Hd generalised geometry

It is well known [2, 3] that the bosonic fields of the reduced supergravity parametrise a

(Ed(d) × R
+)/Hd coset, that is, at each point x ∈M ,

{

g,A, Ã,∆
}

∈
Ed(d)

Hd
× R

+. (4.8)

Thus giving the bosonic fields is equivalent to specifying a generalised metric G. Fur-

thermore, the infinitesimal bosonic symmetry transformation (diffeomorphisms and gauge

transformations of A and Ã) are encoded by the Dorfman derivative [70]

δVG = LVG, (4.9)

and the algebra of these transformations is given by the Courant bracket.
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We now show that the dynamics of the reduced theory are encoded by the torsion-free

Hd connection D. By doing so we show that the theory can be reformulated geometrically

with a local Hd invariance. Such local symmetries were first considered, for d = 7, by

de Wit and Nicolai [4, 5]. The generalised geometry here can be viewed as a geometrical

explanation of their original rewriting. In order to match the dynamics we work in a

particular frame, namely the conformal split Hd frame, which is equivalent to an O(d)

structure on E. It is worth stressing that the generalised geometrical theory isHd covariant,

it is simply that supergravity is conventionally written with only an O(d) ⊂ Hd manifest.

We have already seen that in the conformal split frame D takes the form (3.15).

Viewing sections of S and J in Spin(d) representations one can then write the unique

operators (3.20) in this basis. For example, taking ǫ = e∆/2ε to be the supersymmetry

parameter, one finds

e−∆/2(D ×J ε)a = ∇aǫ+
1

288

(

γa
b1...b4 − 8δa

b1γb2b3b4
)

Fb1...b4ǫ

− 1

12

1

6!
F̃ab1...b6γ

b1...b6ǫ,

e−∆/2(D ×S ε) = γm∇mǫ−
1

4

1

4!
γm1...m4Fm1...m4ǫ

− 1

4

1

7!
F̃m1...m7γ

m1...m7ǫ+
ĉ− 2

2
(γm∂m∆)ǫ.

(4.10)

These exactly match the operators that appear in the supersymmetry variations (4.7).

Given such expressions one can then calculate the Ricci tensor (3.22) in this frame, finding,

e−2∆Rab = Rab − ĉ∇a∇b∆− ĉ(∂a∆)(∂b∆)

− 1

2

1

4!

(

4Fac1c2c3Fb
c1c2c3 − 1

3
gabF

2

)

− 1

2

1

7!

(

7F̃ac1...c6F̃b
c1...c6 − 2

3
gabF̃

2

)

,

e−2∆Rabc =
1

2

[

e−ĉ∆ ∗ d ∗ eĉ∆F − ∗
(

∗ F̃ ∧ F
)

]

abc
,

e−2∆Ra1...a6 =
1

2

[

e−ĉ∆ ∗ d ∗ eĉ∆F̃
]

a1...a6
,

e−2∆R = R− 2(ĉ− 1)∇2∆− ĉ(ĉ− 1)(∂∆)2 − 1

2

1

4!
F 2 − 1

2

1

7!
F̃ 2.

(4.11)

Comparing with (4.5) and (4.6) we see that the bosonic action is given by

SB =

∫

volGR, (4.12)

where volG is the Ed(d)-invariant scalar given in (3.6), and that the bosonic equations of

motion are equivalent to

RMN = 0. (4.13)

As advertised, we have rewritten the bosonic dynamics in terms of generalised curvatures

with a manifest Hd local symmetry.
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4.3 Relation to type II supergravity

The (Ed(d)×R
+)/Hd coset structure can equally well describe the fields of type II theories

in d− 1 dimensions. Specifically
{

g,B, B̃, φ,A±,∆
}

∈
Ed(d)

Hd
× R

+, (4.14)

where B is the NSNS two-form field, B̃ is the six-form potential dual to B, φ is the dilaton

and A± are the RR potentials (in a democratic formalism) where A− is a sum of odd-degree

forms in type IIA and A+ is a sum of even-degree forms in type IIB. All the fields now

depend on a d− 1 dimensional manifold M ′.

The construction of torsion-free compatible connections D follows exactly as above.

The only difference is that the bundles, partial derivative and split frames are now naturally

written in terms of a GL(d−1,R) subgroup of Ed(d) as opposed to GL(d,R) (the appropriate

subgroups are defined in appendix C.4.) In particular, the generalised tangent space takes

the form [21, 52–54]

E ≃ TM ′ ⊕ T ∗M ′ ⊕ Λ5T ∗M ′ ⊕
(

T ∗M ′ ⊗ Λ6T ∗M ′
)

⊕ Λeven/oddT ∗M ′, (4.15)

where “even” refers to type IIA and “odd” to IIB. The partial derivative ∂ now acts via

the embedding T ∗M ′ → E∗ so that ∂f = df ∈ Γ (E∗), for any function f . One still has the

“section condition” ∂f ×N∗ ∂g = 0 but now the space spanned by ∂f is not the maximal

such subspace in E∗ (since ∂M spans one less dimension).

We will not give the expressions for the type II decompositions here, though given

the Spin(d − 1) spinor decomposition in appendix C.4, it is relatively straightforward to

calculate them directly from Spin(d) expressions given in the previous section. The central

point is that the bosonic equations of motion and action given by (4.12) and (4.13) are left

unchanged. What changes is the decomposition of these expressions in the bosonic fields,

and the partial derivative action ∂.

4.4 Identity structures, fluxes and relation to the embedding tensor

The embedding tensor is the object that determines general gaugings of (typically maxi-

mally) supersymmetric theories in 11 − d dimensions [55–57]. It is striking that it trans-

forms in the same Ed(d) representations as the generalised torsion (2.35), namely K ⊕E∗.

That such representations appear in gauged supersymmetric theories has been discussed

in detail in [71–76] in the context of E11 theory (as well as [77] in the case of E10). Here

we simply show why, in the current context, the generalised torsion and the embedding

tensor are related when the gauged supergravity arises from a dimensional reduction of

eleven-dimensional supergravity on a d-dimensional manifold M . This also relates to the

observation that the generic set of fluxes, both geometrical and non-geometrical, are sec-

tions of the same bundle K [52].

To make the connection we first need to identify what structures on the internal space

M lead to maximally supersymmetric theories in 11−d dimensions. Metrically the eleven-

dimensional space is a fibration

ds2 = ĝµν(y)dy
µdyν + gmn(x, y)(dx

m +Am(x, y))(dxn +An(x, y)), (4.16)
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where y and x are coordinates on the external and internal spaces respectively, and Am are

one-forms on the external space. It is well known that tori give suitable supersymmetric

compactifications, as do generic twisted tori (or local group manifolds) [78–82], including

their non-geometrical extensions [47, 48, 70, 83–87]. The corresponding relation to the

embedding tensor is also well established (for a review see [88]). The characteristic feature

of these backgrounds is that the associated generalised tangent space E admits an “identity

structure”, that is, a G-structure P ⊂ F̃ where G is just the trivial group, with a single

element, the identity. This means that the space admits a single globally defined frame
{

ÊA
}

and is a necessary condition for a reduction to a maximally supersymmetric effective

theory. As discussed in the context of N = 2 supersymmetry in [53, 89–91], such reductions

require globally defined spinors on M . For a maximally symmetric theory, there is a

maximal number of such spinors and hence the H̃d-bundle is trivial, implying we have an

identity structure

{

maximal supersymmetric

effective theory

}

⇐⇒
{

exists globally defined

frame on M

}

. (4.17)

Such structures are also sometimes referred to as “generalised parallelizable” spaces [70].

They are the generalised analogues of parallelizable spaces, where there is a globally de-

fined frame {êa}. Note that twisted tori give examples of such generalised parallelizable

spaces, but in principle one could also have a generalised parallelization of E without a

parallelization of TM .

In making the connection to the embedding tensor let us focus on the scalar moduli

fields, which parametrise the coset Ed(d)/Hd. Recall that given a conventional global frame

ea(x) (for example left-invariant one-forms on a local group manifold) one can write a

family of frames e′a(x, y) = ma
b(y)e

b(x) and make a Scherk-Schwarz reduction [92, 93].

The corresponding metrics are given by

g′ = δab e
′a(x, y)⊗ e′b(x, y) = hab(y) e

a(x)⊗ eb(x), (4.18)

where hab(y) = δcdm
c
a(y)m

b
d(y) are moduli parametrising GL(d,R)/O(d). Now suppose

we have a generalised parallelization ÊA(x) and a dual basis EA(x). The scalar fields in the

effective theory similarly can be regarded as parametrising generic Ed(d) transformations

E′A(x, y) =MA
B(y)E

B(x), defining the generalised metric,

G′ = δAB E
′A(x, y)⊗ E′B(x, y) = HAB(y)E

A(x)⊗ EB(x), (4.19)

where HAB(y) = δCDM
C
A(y)M

B
D(y) are moduli parametrising an Ed(d)/Hd coset. Note

that we ignore the R
+ degree of freedom that rescales G. Since this factor was associated

with warping of the external space, which in the dimensionally reduced theory is encoded in

the conformal rescaling of the external metric ĝ, this does not lose any degrees of freedom.

The potential for the scalar moduli arises from the dimensional reduction of the action

on the internal space, which, as we have seen, can be written in terms of the generalised

Ricci scalar as in (4.12). This in turn is completely determined by the torsion-free connec-

tion G′-compatible connection D′. One can construct D′ as follows. Given the transformed

– 25 –



J
H
E
P
0
2
(
2
0
1
4
)
0
5
4

frame
{

Ê′
A

}

we can always define a connection D′′ that is compatible with the correspond-

ing identity structure, that is, for all A,

D′′Ê′
A = 0, (4.20)

but in general it will be torsionful. By definition the torsion is simply given by the algebra

of the basis
{

Ê′
A

}

under the Dorfman derivative, namely,

LÊ′

A
Ê′

C = −T ′
A
B
CÊ

′
B, (4.21)

where T ′ ∈ Γ (K ⊕ E∗) and is moduli dependent. By construction D′′ is compatible with

the generalised metric (4.19). The torsion-free metric compatible connection can then be

constructed as

D′ = D′′ +Σ′, (4.22)

where, in the notation of section 3.2, Σ′ ∈ Γ (E∗ ⊗ adP ) and for D′ to be torsion-free

we require

Σ′ = −T ′ +Q′, (4.23)

where the ambiguous part Q′ ∈ Γ (U). Since the supergravity does not depend on the

ambiguous part Q′ we see that effective theory, and in particularly the scalar potential, is

determined completely by the moduli-dependent T ′ defined in (4.21).

We could also consider the corresponding tensor T for the fixed frame
{

ÊA

}

. This

is independent of the moduli, and is related to T ′, the corresponding “dressed” version,

simply by transforming indices with M or M−1 as appropriate. The undressed T can be

directly identified with the embedding tensor if we make the further assumption that its

components T B
A C are constant. First we note that it is in the same representations of

Ed(d) as the embedding tensor. Second it satisfies the same quadratic relation [55, 56],

giving the embedding of the gauged symmetry group in Ed(d). Here this condition arises

from the Jacobi-like relation, following from the fact that LU satisfies the Leibniz identity,

LU(LVW )− LV (LUW ) = LLUVW. (4.24)

Taking U = ÊA, V = ÊB and W = ÊC this gives

[TA, TB] = TA
C
BTC , (4.25)

where we view (TA)
B
C = TA

B
C as a set of elements in the adjoint representation of Ed(d)

labelled by A.

We can then make the connection to [52], where it was shown that generic fluxes in

string compactifications correlate with the embedding tensor. The definition (4.21) gives T

a direct geometrical interpretation which matches the fluxes identified in [52] in the context

of type IIB backgrounds. Suppose, for example we have a twisted torus (that is a local group

manifold) with a global frame êa. We can then define a generalised parallelization by taking
{

ÊA
}

in the split form (2.15) (that is, with ∆ = 0). Let ∇ be the conventional connection

that satisfies ∇êa = 0 and has torsion T a
bc = −fbca where f are the structure constants
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given by [êa, êb] = fab
cêc. By definition we then have that D∇ÊA = 0. Using (2.38), we

can calculate the components of T of the torsion of D∇ and find

T (V ) = −ivf − f · ω − ivF − f · σ − ivF̃ + ω ∧ F. (4.26)

Thus only certain components of T , the so-called geometrical fluxes, are non-zero. The

corresponding split frame for type IIB generates the geometrical fluxes identified in [52].

5 Conclusions and discussion

We have seen that the action, equations of motion and symmetries for the bosonic fields

in reductions of M theory to d dimensions actually have a remarkably simple and unified

form. The fields unify as a generalised metric. The symmetries are simply the generalised

geometry extensions of diffeomorphisms, and the action is simply the analogue of the Ricci

scalar. The formalism works for all dimensions d ≤ 7 and the theory has an extended local

Hd ⊃ O(d) symmetry. It is a direct extension of our earlier work [23] on reformulating

type II supergravities using O(10, 10)× R
+ generalised geometry.

It is natural to ask how this structure might extend to higher dimensions. The basic

obstruction, even for d = 8, is that although the generalised tangent space exists, together

with an E8(8) × R
+ structure bundle, and a Dorfman derivative, one cannot write the

derivative in the form (2.28), since this gives a non-covariant expression. Consequently,

one does not have a natural way to define the generalised torsion. The problem with

writing the derivative in this form is the presence of the τ ∈ Γ
(

T ∗M ⊗ Λ7T ∗M
)

tensors in

E. Physically these correspond to Kaluza-Klein monopole charges in the U-duality algebra

and should be associated to the symmetries of “dual gravitons”. Note that these terms

already meant, even in d = 7, that we could not write the difference of between the Dorfman

derivative and the bracket (2.39) an the Ed(d)×R
+ covariant form. One possible way out is

to include dependence on the “non-compact” (11−d)-dimensional spaceM10−d,1
ext . Allowing

for diffeomorphisms inM10−d,1
ext may then correct the non-covariance of the naive structure.

The possibility of extending the formalism to the Kac-Moody algebras E10 or E11 is

particularly intriguing. Since we assume an underlying manifold, the connection to the

E10 formalism of [11] is less direct, since there the spacetime is emergent, the E10 fields

encoding a spatial gradient expansion around a spacetime point. The E11 formalism on the

other hand starts with (an infinite number) of coordinates [32] transforming in a partic-

ular representation l1 (which corresponds to the generalised tangent space representation

upon reduction to Ed(d)). One important question is how the dependence on these co-

ordinates might be truncated to define eleven-dimensional supergravity. The results here

would suggest one imposes a quadratic section condition (2.42) projecting onto the corre-

sponding N∗ representation defined by the appropriate node in the e11 Dynkin diagram

as described in section 2.1.3. Another very interesting possibility is that, if a generalised

geometrical formulation can be found for d > 8 it may be that the existence of the torsion-

free compatible connection D actually constrains the Hd-structure. This is what happens

for instance with conventional connections compatible with an almost complex structure,

where the existence of a torsion-free compatible connections requires the structure to be
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integrable. Such a situation would impose differential conditions on the fields defining the

coset (Ed(d) × R
+)/Hd, perhaps truncating the infinite set to a finite number of indepen-

dent components corresponding to the degrees of freedom of supergravity. This may be

connected to the recent result [94] that, given fairly weak assumptions, only a finite number

of the fields in the Kac-Moody algebra are propagating.

As we have already stressed, the formalism used here and in [23] is locally equivalent

to the standard formulation of double field theory and its M theory variants. The deriva-

tions relied only on the partial derivative satisfying the section condition (2.42) (or the

corresponding condition for O(d, d)). The maximal subspace of E∗ satisfying this condi-

tion is d-dimensional and is stabilised by the parabolic subgroup Gsplit. In the context

of double field theory it defines the set of coordinates on which the fields depend, and

is a necessary condition for the formulation of an action and a closed symmetry algebra.

This defines a foliation and reducing along the isometries, the theory is locally defined

on a d-dimensional manifold as in generalised geometry. In either formulation there is a

global O(d, d) or Ed(d) symmetry acting on the frame bundle. However, while the strong

constraint is covariant, the particular choice of a maximal subspace is not invariant under

the global symmetry group.

There are number of other natural extensions to the geometry described here. It would

be interesting to understand if similar constructions can be used for other supergravity

theories. One might also wonder if the formalism can be used to describe higher-derivative

corrections and their Ed(d) transformation properties. A more direct, key application is

the description of supersymmetric backgrounds. Formulations of N = 1 and N = 2

backgrounds in E7(7) language have already been given in [54]. In the current context one

expects that generic supersymmetric backgrounds in d ≤ 7 should correspond to special

holonomy G ⊂ H̃d for the operator D. Note that it is the holonomy of D and not its

projections (4.10) that are relevant, and hence G is a subgroup of H̃d. This is in contrast

to [95, 96] where the holonomy of the operators appearing directly in the supersymmetry

variations was considered, and larger groups can appear. The most obvious extension,

though, is the completion of the description of the supergravity by including the fermionic

degrees of freedom and supersymmetry transformations, at least to leading order. This

will be the main result of [24].
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A Eleven-dimensional supergravity

Let us start by summarising the action, equations of motion and supersymmetry varia-

tions of eleven-dimensional supergravity, to leading order in the fermions, following the

conventions of [97].

The fields are simply
{

gµν ,Aµνρ, ψµ

}

, (A.1)

where gµν is the metric, Aµνρ the three-form potential and ψµ is the gravitino. The bosonic

action is given by

SB =
1

2κ2

∫
(

volg R− 1

2
F ∧ ∗F − 1

6
A ∧ F ∧ F

)

, (A.2)

where R is the Ricci scalar and F = dA. This leads to the equations of motion

Rµν −
1

12

(

Fµρ1ρ2ρ3F ρ1ρ2ρ3
ν − 1

12
gµνF2

)

= 0,

d ∗ F +
1

2
F ∧ F = 0,

(A.3)

where Rµν is the Ricci tensor. Note that we are using the notation K2 = Kµ1...µk
Kµ1...µk

for a rank k tensor K.

The supersymmetry variation of the gravitino is

δψµ = ∇µǫ+
1

288
(Γµ

ν1...ν4 − 8δµ
ν1Γν2ν3ν4)Fν1...ν4ǫ, (A.4)

where Γµ are the Cliff(10, 1;R) gamma matrices and ǫ is the supersymmetry parameter.

B Conventions in Euclidean signature

We use the indices m,n, p, . . . as the coordinate indices and a, b, c . . . for frame indices.

We take symmetrisation of indices with weight one. Given a polyvector w ∈ ΛpTM and a

form λ ∈ ΛqT ∗M , we write in components

w =
1

p!
wm1...mp

∂

∂xm1
∧ · · · ∧ ∂

∂xmp
,

λ =
1

q!
λm1...mqdx

m1 ∧ · · · ∧ dxmq ,

(B.1)

so that wedge products and contractions are given by

(

w ∧ w′
)m1...mp+p′ =

(p+ p′)!

p!p′!
w[m1...mpw′mp+1...mp+p′ ],

(

λ ∧ λ′
)

m1...mq+q′
=

(q + q′)!

q!q′!
λ[m1...mq

λ′mq+1...mq+q′ ]
,

(w y λ)m1...mq−p
:=

1

p!
wn1...npλn1...npm1...mq−p if p ≤ q,

(w y λ)m1...mp−q :=
1

q!
wm1...mp−qn1...nqλn1...nq if p ≥ q.

(B.2)
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Given the tensors t ∈ TM ⊗ Λ7TM , τ ∈ T ∗M ⊗ Λ7T ∗M and a ∈ TM ⊗ T ∗M with

components

t =
1

7!
wm,m1...m7

∂

∂xm
⊗ ∂

∂xm1
∧ · · · ∧ ∂

∂xm7
,

τ =
1

7!
τm,m1...m7dx

m ⊗ dxm1 ∧ · · · ∧ dxmq ,

a = amn
∂

∂xm
⊗ dxn,

(B.3)

and also a form σ ∈ Λ5T ∗M and a vector v ∈ TM , we use the “j-notation” from [22],

defining

(w y τ)m1...m8−p
:=

1

(p− 1)!
wn1...npτn1,n2...npm1...m8−p

,

(t y λ)m1...m8−q :=
1

(q − 1)!
tn1,n2...nqm1...m8−qλn1...nq ,

(t y τ) :=
1

7!
tm,n1...n7τm,n1...n7 ,

(

jw ∧ w′
)m,m1...m7 :=

7!

(p− 1)!(8− p)!
wm[m1...mp−1w′mp...m7],

(

jλ ∧ λ′
)

m,m1...m7
:=

7!

(q − 1)!(8− q)!
λm[m1...mq−1

λ′mq ...m7]
,

(jw y jλ)m n :=
1

(p− 1)!
wmn1...np−1λnn1...np−1 ,

(jt y jτ)m n :=
1

7!
tm,n1...n7τn,n1...n7 ,

(

jp+1λ ∧ τ
)

m1...mp+1,n1...n7
:= (p+ 1)λ[m1...τmp+1],n1...n7

,

(

j3σ ∧ σ′
)

m1...m3,n1...n7
:=

7!

5! · 2!σm1...m3[n1n2
σ′...n7]

,

(v y jτ)mn1...n6 := vnτm,nn1...n6 .

(B.4)

The d-dimensional metric g is always positive definite. We define the orientation,

ǫ1...d = ǫ1...d = +1, and use the conventions

∗λm1...md−q
=

1

q!

√

|g|ǫm1...md−qn1...nqλ
n1...nq ,

λ2 = λm1...mqλ
m1...mq .

(B.5)

C Ed(d) × R
+ and Hd

C.1 Construction of Ed(d) × R
+ from GL(d,R)

In this section we give an explicit construction of Ed(d)×R
+ for d ≤ 7 based on the GL(d,R)

subgroup. If GL(d,R) acts linearly on the d-dimensional vector space F , we define

W1 = F ⊕ Λ2F ∗ ⊕ Λ5F ∗ ⊕
(

F ∗ ⊗ Λ7F ∗
)

,

W ∗
1 = F ∗ ⊕ Λ2F ⊕ Λ5F ⊕

(

F ⊗ Λ7F
)

,

Wad = R⊕ (F ⊗ F ∗)⊕ Λ3F ∗ ⊕ Λ6F ∗ ⊕ Λ3F ⊕ Λ6F.

(C.1)
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The corresponding Ed(d) × R
+ representations are listed in table 1. We write elements as

V = v + ω + σ + τ ∈W1,

Z = ζ + u+ s+ t ∈W ∗
1 ,

R = c+ r + a+ ã+ α+ α̃ ∈Wad,

(C.2)

so that v ∈ F , ω ∈ Λ2F ∗, ζ ∈ F ∗, c ∈ R etc. If {êa} is a basis for F with a dual basis {ea}
on F ∗ then there is a natural gl(d,R) action on each tensor component. For instance

(r · v)a = rabv
b, (r · ω)ab = −rcaωcb − rcbωac, etc. (C.3)

Writing V ′ = R · V for the adjoint Ed(d) × R
+ action of R ∈ Wad on V ∈ F , the

components of V ′, using the notation of appendix B, are given by

v′ = cv + r · v + α y ω − α̃ y σ,

ω′ = cω + r · ω + v y a+ α y σ + α̃ y τ,

σ′ = cσ + r · σ + v y ã+ a ∧ ω + α y τ,

τ ′ = cτ + r · τ − jã ∧ ω + ja ∧ σ.

(C.4)

Note that, the Ed(d) sub-algebra is generated by setting c = 1
(9−d)r

a
a. Similarly, given

Z ∈W ∗
1 we have

ζ ′ = −cζ + r · ζ − u y a+ s y ã,

u′ = −cu+ r · u− α y ζ − s y a+ t y ã,

s′ = −cs+ r · s− α̃ y ζ − α ∧ u− t y a,

t′ = −ct+ r · t− jα ∧ s− jα̃ ∧ u.

(C.5)

Finally the adjoint commutator

R′′ =
[

R,R′
]

(C.6)

has components

c′′ =
1

3

(

α y a′ − α′
y a

)

+
2

3

(

α̃′
y ã− α̃ y ã′

)

,

r′′ =
[

r, r′
]

+ jα y ja′ − jα′
y ja− 1

3

(

α y a′ − α′
y a

)

1

+ jα̃′
y jã− jα̃ y jã′ − 2

3

(

α̃′
y ã− α̃ y ã′

)

1,

a′′ = r · a′ − r′ · a+ α′
y ã− α y ã′,

ã′′ = r · ã′ − r′ · ã− a ∧ a′,
α′′ = r · α′ − r′ · α+ α̃′

y a− α̃ y a′,

α̃′′ = r · α̃′ − r′ · α̃− α ∧ α′ .

(C.7)

Here we have c′′ = 1
9−dr

′′a
a, as R

′′ lies in the Ed(d) sub-algebra.

The Ed(d)×R
+ Lie group can then be constructed starting with GL(d,R) and using the

exponentiated action of a, ã, α and α̃. The GL(d,R) action by an element m is standard so

(m · v)a = ma
bv

b, (m · ω)ab =
(

m−1
)c

a

(

m−1
)d

bωcd, etc. (C.8)
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The action of a and ã form a nilpotent subgroup of nilpotency class two. One has

ea+ãV = v + (ω + iva)

+

(

σ + a ∧ ω +
1

2
a ∧ iva+ ivã

)

+

(

τ + ja ∧ σ − jã ∧ ω +
1

2
ja ∧ a ∧ ω

+
1

2
ja ∧ ivã−

1

2
jã ∧ iva+

1

6
ja ∧ a ∧ iva

)

,

(C.9)

with no terms higher than cubic in the expansion. The action of α and α̃ form a similar

nilpotent subgroup of nilpotency class two with

eα+α̃V =

(

v + α y ω − α̃ y σ +
1

2
α y α y σ

+
1

2
α y α̃ y τ +

1

2
α̃ y α y τ +

1

6
α y α y α y τ

)

+ (ω + α y σ + α̃ y τ + α y α y σ)

+ (σ + α y τ) + τ.

(C.10)

A general element of Ed(d) × R
+ then has the form

M · V = eλ eα+α̃ ea+ãm · V, (C.11)

where eλ with λ ∈ R is included to give a general R+ scaling.

C.2 Some tensor products

We also define two tensor products. We have the map into the adjoint

×ad :W ∗
1 ⊗W1 →Wad. (C.12)

Writing R = Z ×ad V we have

c = −1

3
u y ω − 2

3
s y σ − t y τ,

r = v ⊗ ζ − ju y jω +
1

3
(u y ω)1 − js y jσ +

2

3
(s y σ)1 − jt y jτ,

α = v ∧ u+ s y ω + t y σ,

α̃ = −v ∧ s− t y ω,

a = ζ ∧ ω + u y σ + s y τ,

ã = ζ ∧ σ + u y τ.

(C.13)

We can also consider the space W2 as given in table 2. Taking

W2 = F ∗ ⊕ Λ4F ∗ ⊕
(

F ∗ ⊗ Λ6F ∗
)

⊕
(

Λ3F ∗ ⊗ Λ7F ∗
)

⊕
(

Λ6F ∗ ⊗ Λ7F ∗
)

,

Y = λ+ κ+ µ+ ν + π,
(C.14)
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we have that the symmetric map W1 ⊗W1 →W2 is

λ = v y ω′ + v′ y ω,

κ = v y σ′ + v′ y σ − ω ∧ ω′,

µ =
(

jω ∧ σ′ + jω′ ∧ σ
)

− 1

4

(

σ ∧ ω′ + σ′ ∧ ω
)

+ (v y jτ) +
(

v y jτ ′
)

− 1

4

(

v y τ ′ + v′ y τ
)

,

ν = j3ω ∧ τ ′ + j3ω′ ∧ τ − j3σ ∧ σ′,
π = j6σ ∧ τ ′ + j6σ′ ∧ τ.

(C.15)

C.3 Hd and O(d)

Given a positive definite metric g on F , which for convenience we take to be in standard

form δab in frame indices, we can define a metric on W1 by

G(V, V ) = v2 +
1

2!
ω2 +

1

5!
σ2 +

1

7!
τ2, (C.16)

where v2 = vav
a, ω2 = ωabω

ab, etc as in (B.5). Note that this metric allows us to identify

W1 ≃W ∗
1 .

The subgroup of Ed(d) × R
+ that leaves the metric is invariant is Hd, the maximal

compact subgroup of Ed(d) (see table 3). The corresponding Lie algebra is parametrised by

N = n+ b+ b̃ ∈ Λ2F ∗ ⊕ Λ3F ∗ ⊕ Λ6F ∗, (C.17)

and embeds in Wad as

c = 0,

rab = nab,

aabc = −αabc = babc,

ãa1...a6 = α̃a1...a6 = b̃a1...a6 ,

(C.18)

where indices are lowered with the metric g. Note that nab generates the O(d) ⊂ GL(d,R)

subgroup that preserves g. Concretely a general group element can be written as

H · V = eα+α̃ ea+ã h · V, (C.19)

where h ∈ O(d) and a and α and ã and α̃ are related as in (C.18).

Finally we note that the double cover H̃d of Hd has a realisation in terms of the Clifford

algebra Cliff(d;R). Consider the gamma matrices γa satisfying
{

γa, γb
}

= 2gab. The Hd

Lie algebra can be realised on Cliff(d;R) spinors by taking

N =
1

2

(

1

2!
nabγ

ab − 1

3!
babcγ

abc − 1

6!
b̃a1...a6γ

a1...a6

)

. (C.20)

Again nab generates the Spin(d) subgroup of H̃d.
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C.4 Type II GL(d − 1,R) and O(d − 1) subgroups of Ed(d) × R
+

We can identify two distinct GL(d− 1,R) subgroups of Ed(d) appropriate to type IIA and

type IIB.

For type IIA, GL(d − 1,R) is a subgroup of the GL(d,R) group used to define the

Ed(d) × R
+ group in section C.1. We simply decompose the d-dimensional space as

F ≃ L⊕ R, (C.21)

with a GL(d− 1,R) action on L. Concretely, if we write the GL(d,R) index a = (1, i) then

the GL(d− 1,R) Lie algebra p ∈ L⊗ L∗ embeds as

rij = pij . (C.22)

Under this decomposition one has

W1 = L⊕ L∗ ⊕ Λ5L∗ ⊕
(

L∗ ⊗ Λ6L∗
)

⊕ ΛevenL∗,

Wad = R⊕ R⊕ (L⊗ L∗)⊕ Λ2L∗ ⊕ Λ2L∗

⊕ Λ6L∗ ⊕ Λ6L∗ ⊕ ΛoddL∗ ⊕ ΛoddL∗.

(C.23)

For type IIB the embedding is slightly more complicated. We decompose GL(d,R)

under a GL(d − 2,R) × SL(2,R) subgroup, i.e. we decompose F as a d − 2-dimensional

space A and 2-dimensional space B. We then identify

F ≃ A⊕B, L̂ = A⊕ Λ2B∗, (C.24)

where the GL(d − 1,R) action acts on L̂ and under SL(2,R) we have Λ2B∗ ≃ R (this is

needed for L̂ to form a representation of GL(d − 1,R)). Writing indices a = (1, 2, ı̂), the

GL(d− 1,R) Lie algebra element p̂ ∈ L̂⊗ L̂∗ embeds as

rı̂ ̂ = p̂ı̂ ̂, αı̂12 = p̂ı̂1, aı̂12 = p̂1 ı̂, r11 = r22 = −1

2
p̂11. (C.25)

Decomposing under the GL(d− 2,R)×SL(2,R) subgroup and then recombining the terms

into GL(d− 1,R)× SL(2,R) representations we find

W1 = L̂⊕ Λ3L̂∗ ⊕
(

L̂∗ ⊗ Λ6L̂∗
)

⊕
[

B ⊗
(

L̂∗ ⊕ Λ5L̂∗
)

]

,

Wad = R⊕
(

B ⊗B∗
)

0
⊕

(

L̂⊗ L̂∗
)

⊕ Λ4L̂∗ ⊕ Λ4L̂

⊕
[

B ⊗
(

Λ2L̂∗ ⊕ Λ2L̂⊕ Λ6L̂∗ ⊕ Λ6L̂
)

]

.

(C.26)

After breaking the SL(2,R) action on B this becomes

W1 = L̂⊕ L̂∗ ⊕ Λ5L̂∗ ⊕
(

L̂∗ ⊗ Λ6L̂∗
)

⊕ ΛoddL̂∗,

Wad = R⊕ R⊕
(

L̂⊗ L̂∗
)

⊕ Λ2L̂∗ ⊕ Λ2L̂

⊕ Λ6L̂∗ ⊕ Λ6L̂⊕ ΛevenL̂∗ ⊕ ΛevenL̂.

(C.27)
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The corresponding embeddings of O(d − 1) in Hd follow from the intersection of the

embedding (C.18) with (C.22) and (C.25). The Hd algebra element decomposes as

N = q + s+ s̃+ t− ∈ Λ2L∗ ⊕ Λ2L∗ ⊕ Λ6L∗ ⊕ ΛoddL∗,

= q̂ + ŝ+ ˆ̃s+ t̂+ ∈ Λ2L̂∗ ⊕ Λ2L̂∗ ⊕ Λ6L̂∗ ⊕ ΛevenL̂∗.
(C.28)

Lifting to a Spin(d− 1) action, it is important to note that Cliff(d− 1;R) for the type IIB

spinors does not embed in Cliff(d;R); only the spin group Spin(d− 1) embeds. Concretely,

in both cases, one can decompose the Cliff(d;R) spinors under γ1 by

γ1ǫ± = ±ǫ±. (C.29)

Each spinor ǫ± then transforms under the Spin(d) group generated by

γ̂ij = γij type IIA

γ̂ij =















γ ı̂̂ if i = ı̂, j = ̂

γ ı̂12 if i = ı̂, j = 1

−γ ̂12 if i = 1, j = ̂

type IIB .
(C.30)

One then has the Clifford action for the type IIA decomposition

Nǫ± =
1

2

(

1

2!
qabγ̂

ab ∓ 1

2!
sabγ̂

ab − 1

6!
s̃a1...a6 γ̂

a1...a6

)

ǫ±

− 1

2

∑

n

1

n!
(±)[(n+1)/2]t−a1...an γ̂

a1...anǫ∓
(C.31)

and

Nǫ± =
1

2

(

1

2!
q̂abγ̂

ab ∓ 1

2!
ŝabγ̂

ab − 1

6!
ˆ̃sa1...a6 γ̂

a1...a6

)

ǫ±

− 1

2

∑

n

1

n!
(±)[(n+1)/2]t̂+a1...an γ̂

a1...anǫ∓,
(C.32)

for type IIB.
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